Frequency response is an important element of circuit/system characteristics

→ What determines frequency responses of MOS amplifiers?

- How do we express frequency-domain characteristics of circuits?

→Transfer functions in s-domain (Laplace Transform)

We are often interested in the sinusoidal steady-state response $s = j\omega$

$$H(j\omega) = \frac{1}{1 + j\omega RC}$$

$$H(j\omega) = \frac{1}{1 + j\omega RC}$$

 How do magnitude and phase of H(jω) change as frequency changes?

$$|H(j\omega)| = \frac{1}{\sqrt{1+(\omega RC)^2}}$$

$$\sqrt{1 + (\omega KC)}$$

Magnitude: $20 \log_{10} |H(j\omega)|$ (dB) vs $\log \omega$

$$\angle H(j\omega) = -\tan^{-1}(\omega RC)$$

Phase: $\angle H(j\omega)$ vs $\log \omega$

Named after Hendrik Bode (1905 - 1982), an American engineer who specialized in control theory

Bode Plots

Electronic Circuits 2 (17/1)

V_{in}/

In general, linear systems (electronic circuits included) are characterized by multiple poles and zeros

$$H(s) = A_0 \frac{\left(1 + \frac{s}{\omega_{z1}}\right) \left(1 + \frac{s}{\omega_{z2}}\right) \cdots}{\left(1 + \frac{s}{\omega_{p1}}\right) \left(1 + \frac{s}{\omega_{p2}}\right) \cdots}$$
 Zeros:
Poles:

Bode plot?

➔ Frequency response can be determined by pole, zero identification and 'addition' of each pole and zero response in log scale

H(s) = s

- Bode Plot for MOS circuit (Ignoring MOS frequency response, $\lambda = 0$)

- Homework:

Determine magnitude and phase Bode plots for small-signal voltage gain (V_{out}/V_{in}). Ignore the frequency response of M₁. Assume $\lambda = 0$, the input pole frequency is lower than the output pole and zero frequencies, and all pole zero frequencies are well separated.

