

Requirements for planar dielectric waveguides

- Precise control of dimension and refractive index
- Low loss at desired λ
- Mass production
- Electrical control of refractive index (Electro-optic effect)
- Integration (Photonics Integrated Circuit)

Materials used for waveguides

- Ceramics: LiNbO₃ (Lithium Niobate) with Ti doping for core

- Si₃N₄ (core) / SiO₂ (cladding) typically on Si wafer

Materials used for waveguides

- SOI (Si on Insulator) Si (core)/ SiO₂ (cladding) → Si Photonics

- Si is transparent to 1.5μm light
- Si fabrication technology is very mature
- Si photonics provides possibility of integrating photonics and electronics on Si wafer

SOI wafer fabrication

Photonic circuits based on planar waveguides

- Directional coupler

$$P_1 = P_0 \cos^2(\kappa z)$$

$$P_2 = P_0 \sin^2(\kappa z)$$

κ: Coupling coefficient

Used for dividing light into various waveguides → Beam splitter

In many materials, the refractive index can be changed by an applied voltage (Electro-optic effect) -> Tunable optical power diver

Optical signal routing

→ key network function

Mach-Zehnder Interferometer:

Realize M-Z interferometer with waveguides

With voltage applied, light travelling in two different arms experiences different amount of phase shift

→ Modulation of output intensity

Mach-Zehnder Modulator (MZM): A key element in optical communication

Si Photonics: Future of electronics and photonics

Homework:

(See the figure next page. Assume Pout has cos2 dependence on Pin)

Consider a Mach-Zehnder interferometer shown below. The refractive index that $1.5~\mu m$ light experiences while traveling inside the interferometer is 3.5 when no bias voltage is applied. Due to manufacturing problems, $l_1=100~\mu m$ and $l_2=100.1~\mu m$ are not the same.

(a)(10) What is the output power when the input power is 1mW at 1.5 μm and no bias is applied?

We want to use the interferometer as an optical on/off switch by applying voltage to the upper arm as shown. The refractive index of the upper arm increases 0.001 per 1 volt applied.

(b)(10) What is the voltage with the smallest absolute value that needs to be applied to make the switch on?

Homework:

