High-speed Serial Interface

Lect. 10: Clock and Data Recovery

Block diagram

Clock Architecture for Interfaces

- Forwarded clocking vs. embedded clocking

Bryan Casper - "Clocking Analysis, Implementation and Measurement Techniques for High-Speed Data Links—A Tutorial", 2009 TCAS1

Clock signals in forwarded clocking are corrupted during transmission Clock recovery is essential

Clock Data Recovery

Spectra of NRZ data

- No spectral power at the clock frequency
- Simple filtering cannot provide clock frequency

Phase of Recovered Clock

- Clock recovery based on edge detection
- Recovered clock phase should provide the best sampling point for lowest error probability
- Recovered clock and decision circuit should have small jitter

PLL-based CDR

- Difference between PLL and CDR
 - PD input
 - PLL: Reference clock
 - CDR: Data
 - PD in CDR provides the phase difference between input data and the recovered clock
 - No divider

Phase detector

- Linear vs. Bang-Bang
 - Linear phase detector produces output proportional to phase difference → PLL-like behavior
 - Bang-bang phase detector produces only UP or DN signal corresponding to the sign of phase error.

Phase Detector for CDR

- PD only when there is data transition
- Duration of Y: Phase difference between clock and data transition
- However, Y is only positive and depends on transition density
- A reference value for Y?

Hogge PD

- Y: Identical to XOR PD output
- X: Reference signal having duration of half the period when there is data transition
- Y used as Up and X as Dn for charge pump
- CK slows down until X and Y have the same duration
- Data are sampled at the optimal time and A and B provide recovered data

- XOR outputs can directly drive the charge pump
- Need a relatively high-speed charge pump

CDR Dynamics

- Very Similar to PLL

$$T(s) = \frac{\alpha \frac{I_{cp}}{2\pi} (R + \frac{1}{sC}) \frac{K_{VCO}}{s}}{1 + \alpha \frac{I_{cp}}{2\pi} (R + \frac{1}{sC}) \frac{K_{VCO}}{s}} = \frac{\frac{\alpha I_{cp} (sRC + 1) K_{VCO}}{2\pi C}}{s^2 + \frac{\alpha I_{cp} RK_{VCO}}{2\pi M} s + \frac{\alpha I_{cp} K_{VCO}}{2\pi C}}$$

- α represents data transition density
- ➔ CDR dynamics depends on data pattern

Limitation of Hogge PD

- For high-speed application, reliable realization of Hogge (Linear) PD becomes challenging
 - Short pulses for representing phase differences
 - ➔ XOR has to be fast

Otherwise, distorted pulse shapes

 When locked, charge pump output voltage becomes triangular wave

Limitation of Hogge PD

- For high-speed application, reliable realization of Hogge (Linear) PD becomes challenging
 - Static phase offset
 - Clk-to-Q delay (Δ T) for FF1 results in wider Y \rightarrow phase offset

Bang-Bang Phase detector

 Determine whether there is data transition and whether clock is early or late by three consecutive sampling

- Same signs for S_1, S_2, S_3 : No transition
- Same signs for S_1, S_2 but different for S_3 : Clock early
- Same signs for S_2, S_3 but different for S_1 : Clock late

Alexander Phase Detector

Alexander Phase Detector

Alexander Phase Detector

- PD produces output whose width does not change (two periods)

- PD gain is infinite at $\Delta \phi = 0$ (No phase offset)

CDR with Alexander PD

- No charge pump: PD gain is very high
- Simple linear loop analysis not possible
- In reality, input jitter affects PD gain