High-Speed Serial Interface Circuits and Systems

Lect. 4 – Phase-Locked Loop (PLL)

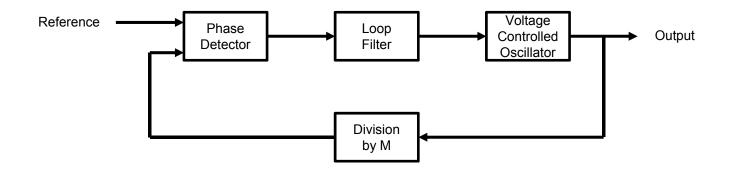
Type 1

(Chap. 8 in Razavi)

PLL

Phase locked loop

A (negative-feedback) control system that generates an output signal whose phase (and frequency) is related to the phase (and frequency) of an input reference signal – wikipedia –



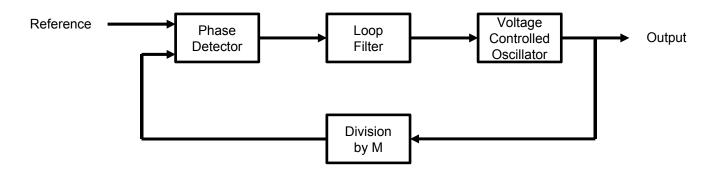
- Output signal is phase-locked to reference signal:
 - → Constant phase relationship
 - \rightarrow f_{out} = M x f_{Reference}

PLL

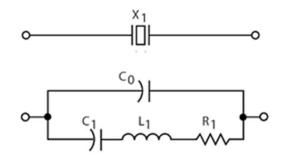
- Applications
 - Frequency Synthesis
 - Clocks for digital systems
 - LO in RF systems
 - Clock recovery
 - Modulation/Demodulaton



PLL Block Diagram



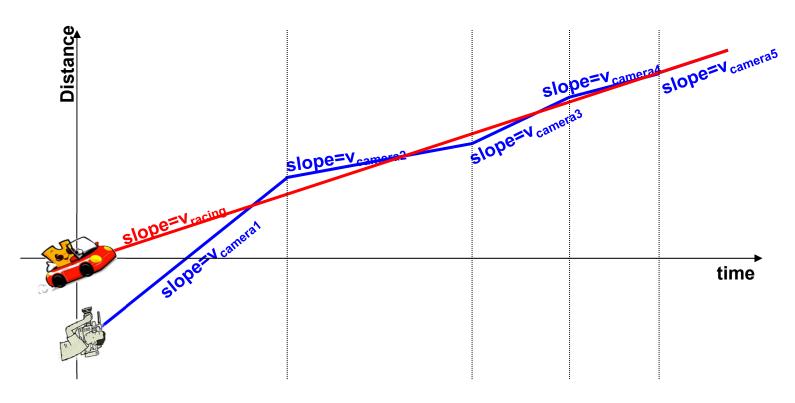
• Reference?



Equivalently, an LC oscillator

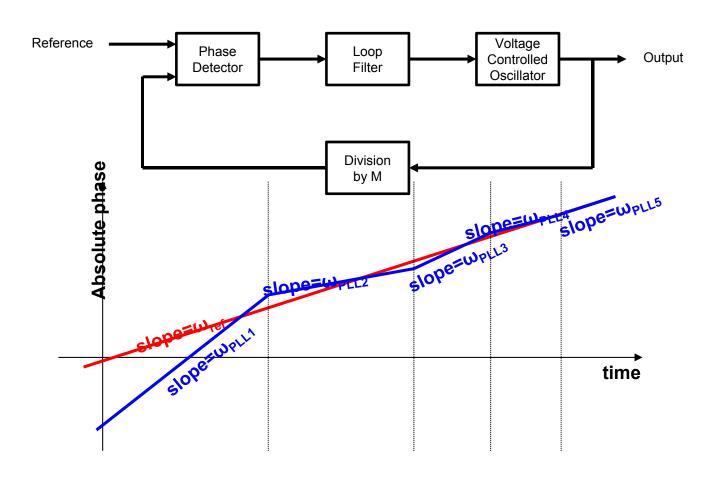
Oscillation frequency: kHz ~ a few hundred MHz

Phase-tracking by PLL

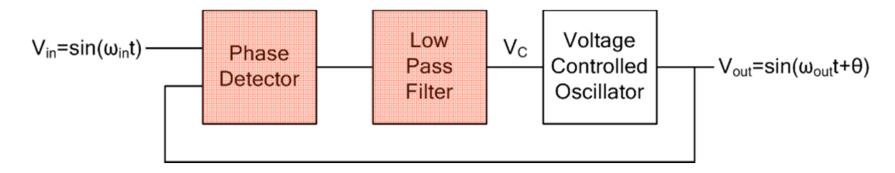


- Cameraman can only control the accelerator (velocity)
- Distance: Integral of velocity
- → Control of velocity in order to lock the distance
- →After locking, distance and velocity should be the same

Phase-tracking by PLL



PLL achieves phase-locking by changing VCO frequency

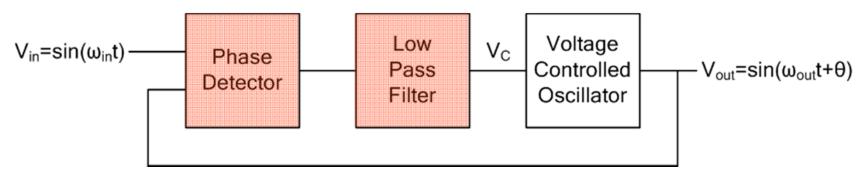


PD (Phase Detector): Compares phases of input and output signal and converts the phase difference to voltage signal

LPF (Low Pass Filter): Takes an average level of PD's output voltage signal

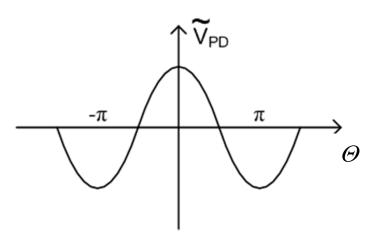
PD can be realized with a multiplier

$$\sin(\omega_{in}t)\sin(\omega_{out}t+\theta) = \frac{1}{2}\left\{\cos[(\omega_{in}-\omega_{out})t-\theta]-\cos[(\omega_{in}+\omega_{out})t+\theta]\right\}$$

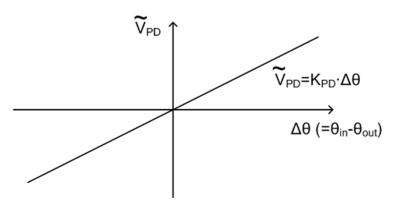


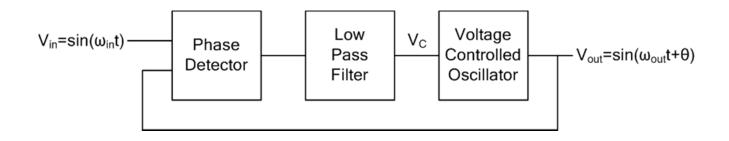
$$\sin(\omega_{in}t)\sin(\omega_{out}t+\theta) = \frac{1}{2}\left\{\cos[(\omega_{in}-\omega_{out})t-\theta]-\cos[(\omega_{in}+\omega_{out})t+\theta]\right\}$$
 Filtered out by LPF

Assuming ω_{in} = ω_{out}



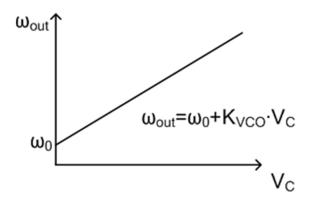
Approximately linear for $\theta = -\pi/2$

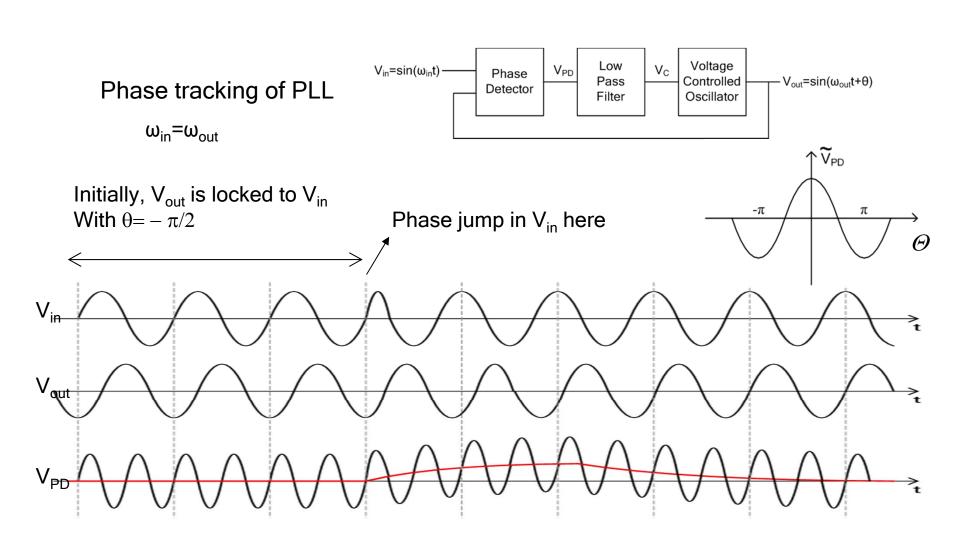




VCO (Voltage Controlled Oscillator): Frequency-tunable oscillator

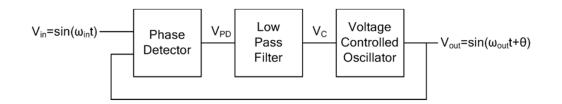
→ Output frequency is a function of control voltage (V_C)

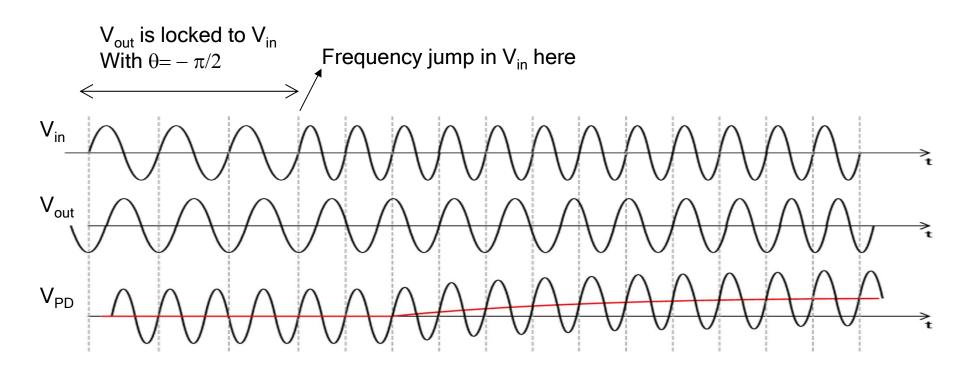




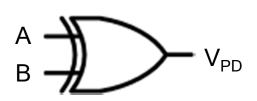
Frequency tracking of PLL

 $\omega_{in} \neq \omega_{out}$

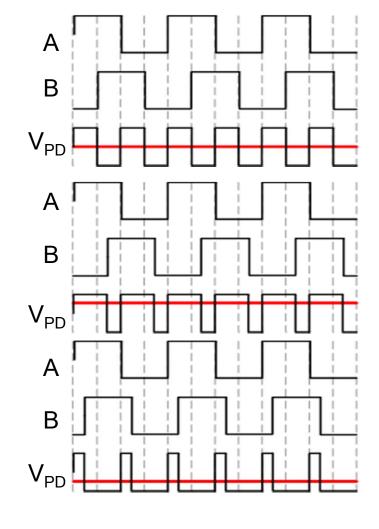




XOR gate can be used as PD for digital signals



Α	В	V_{PD}
0	0	0
0	1	1
1	0	1
1	1	0

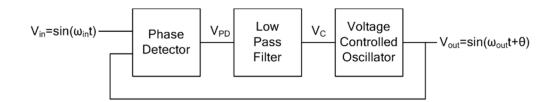


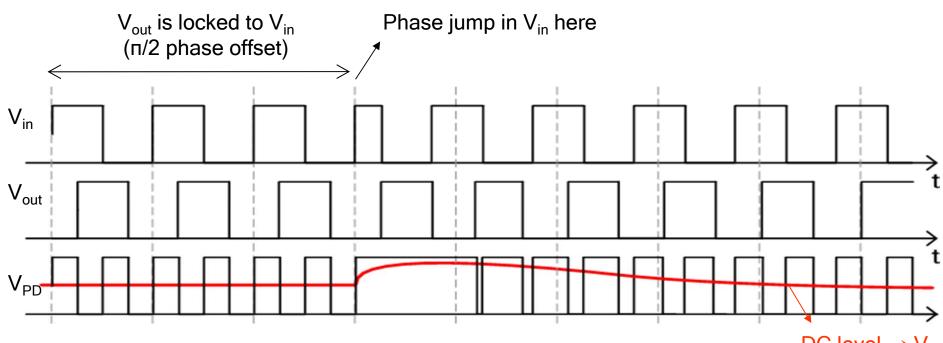
Locked (п/2 phase offset)

B later than A

B earlier than A

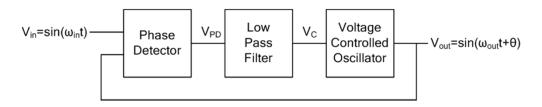
 $\omega_{in} = \omega_{out}$

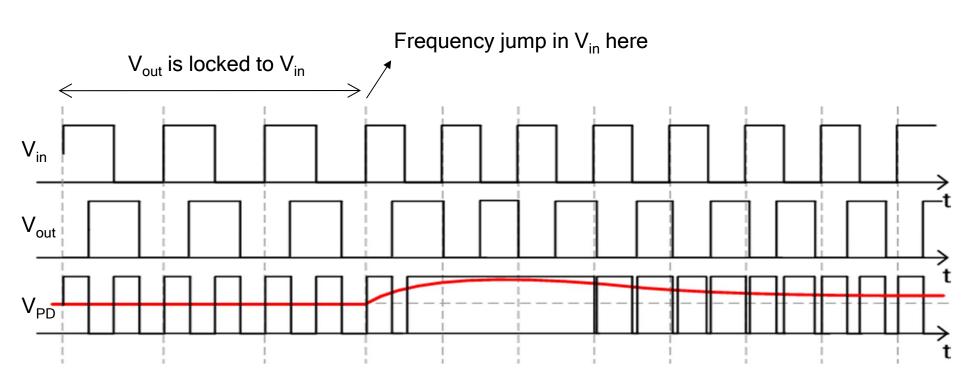




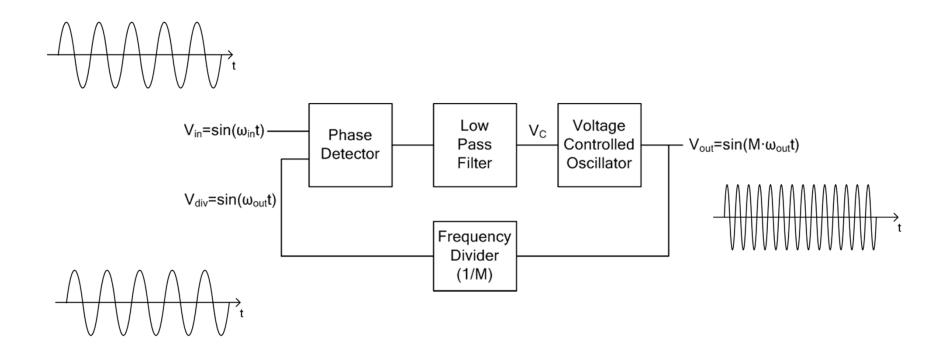
Frequency tracking of PLL

 $\omega_{in} \neq \omega_{out}$

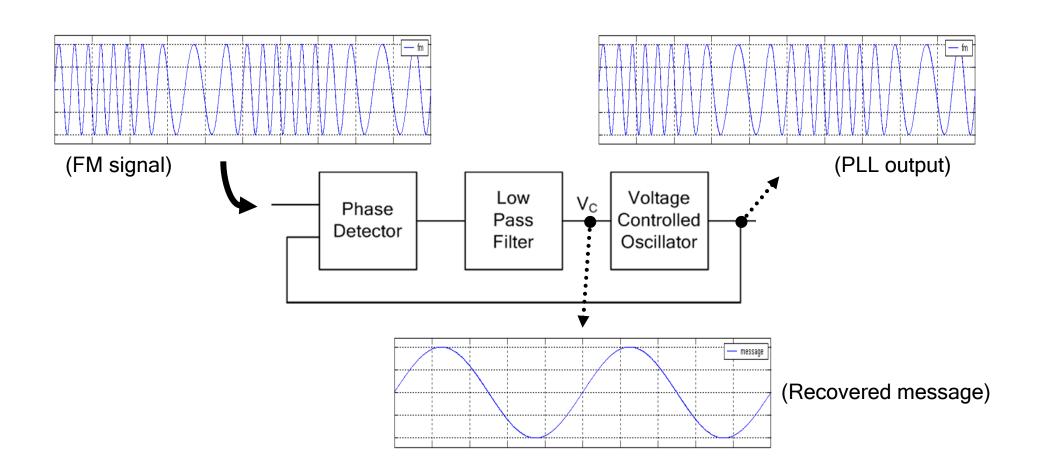


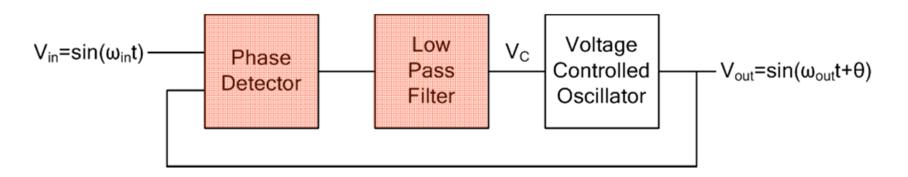


Frequency Synthesis with PLL



Frequency Demodulation with PLL





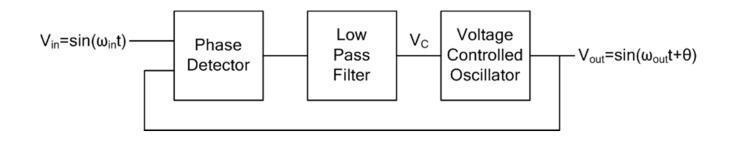
Linear approximation for PD characteristics

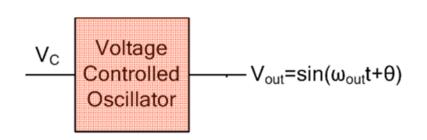
LPF: First order with pole at s = - ω_p

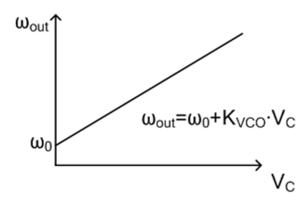
$$V_{PD}$$
 $\Delta \phi (\phi_{in} - \phi_{out})$

$$V_{PD}(s) = K_{PD} x \Delta \phi(s)$$

$$T(s) = \frac{V_C(s)}{V_{PD}(s)} = \frac{\omega_p}{s + \omega_p}$$





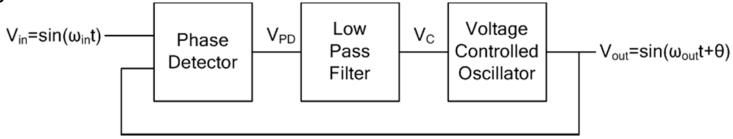


For simplicity let ω_0 =0

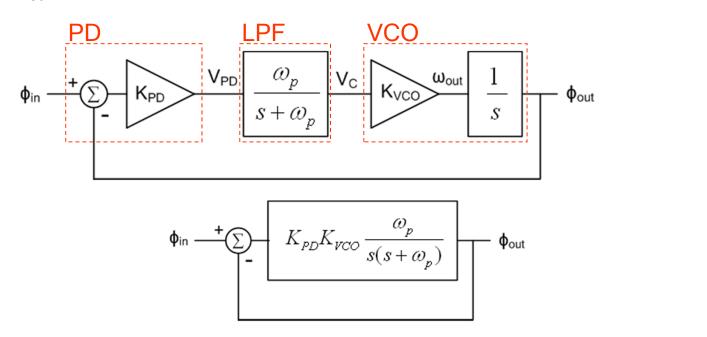
Since
$$d\phi/dt = \omega$$

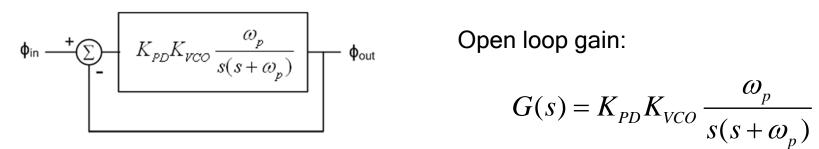
$$\phi_{\text{out}}(s) = (1/s) K_{\text{VCO}} \times V_{\text{C}}(s)$$

PLL Block Diagram



Linear Model for $\phi_{out}(s) / \phi_{in}(s)$





$$G(s) = K_{PD} K_{VCO} \frac{\omega_p}{s(s + \omega_p)}$$

Closed loop gain

$$H(s) = \frac{\phi_{out}(s)}{\phi_{in}(s)} = \frac{G(s)}{1 + G(s)} = \frac{K_{PD}K_{VCO} \frac{\omega_p}{s(s + \omega_p)}}{1 + K_{PD}K_{VCO} \frac{\omega_p}{s(s + \omega_p)}} = \frac{K_{PD}K_{VCO} \omega_p}{s^2 + \omega_p s + K_{PD}K_{VCO} \omega_p}$$

→ 2nd order LPF!

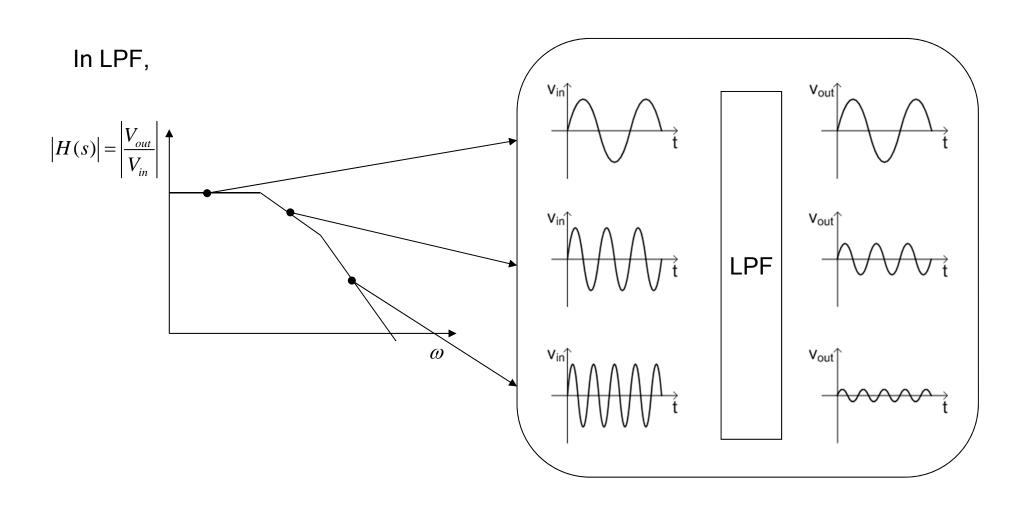
$$H(s) = \frac{\phi_{out}(s)}{\phi_{in}(s)} = \frac{K_{PD}K_{VCO}\omega_p}{s^2 + \omega_p s + K_{PD}K_{VCO}\omega_p} \qquad |H(s)| = \left|\frac{\phi_{out}}{\phi_{in}}\right|^{\frac{1}{2}}$$

$$H(s) \Big| = \left| \frac{\phi_{out}}{\phi_{in}} \right|$$

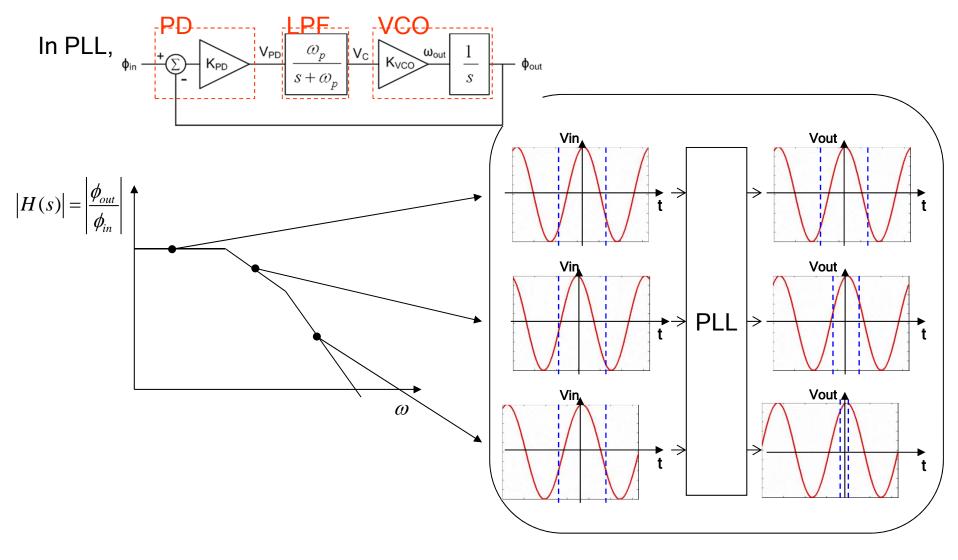
Note that input and output are 'phase'

(Assuming two real poles)

Magnitude Response vs Phase Response



Magnitude Response vs Phase Response



$$H(s) = \frac{\phi_{out}(s)}{\phi_{in}(s)} = \frac{K_{PD}K_{VCO}\omega_p}{s^2 + \omega_p s + K_{PD}K_{VCO}\omega_p} \xrightarrow{\phi_{in}} \frac{PD}{\sqrt{\Sigma}} \xrightarrow{V_{PD}} \frac{PD}{\sqrt{S}} \xrightarrow{V_{PD}} \frac{VCO}{\sqrt{S}} \xrightarrow{\phi_{out}} \frac{1}{s} \xrightarrow{\phi_{out}}$$

2nd order system
$$H(s) = \frac{\omega_n^2}{s^2 + (\omega_n / Q)s + \omega_n^2} \qquad H(s) = \frac{\omega_n^2}{s^2 + 2\varsigma\omega_n s + \omega_n^2}$$

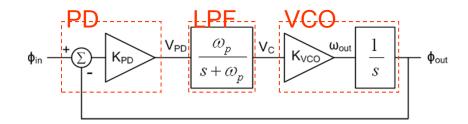
$$H(s) = \frac{\omega_n^2}{s^2 + 2\varsigma\omega_n s + \omega_n^2}$$

$$\omega_n = \sqrt{K_{PD}K_{VCO}\omega_P}$$
 $Q = \sqrt{\frac{K_{PD}K_{VCO}}{\omega_P}}$
 $\zeta = \frac{1}{2Q} = \frac{1}{2}\sqrt{\frac{\omega_P}{K_{PD}K_{VCO}}}$

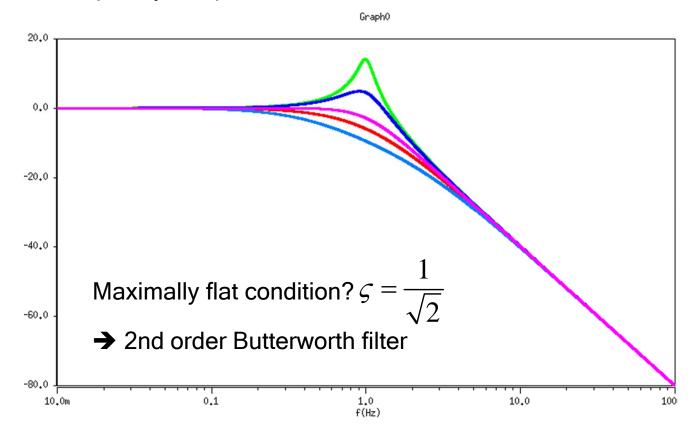
Where are the poles?
$$\zeta > 1$$
: Over damped $(-\zeta \pm \sqrt{\zeta^2 - 1})\omega_n$. $\zeta < 1$: Under damped

 $\zeta = 1$: Critically damped

$$H(s) = \frac{\phi_{out}(s)}{\phi_{in}(s)} = \frac{\omega_n^2}{s^2 + 2\varsigma\omega_n s + \omega_n^2} \qquad \phi_{in} \qquad \phi_{in$$



Frequency Response



$$\omega_n = 2\pi$$

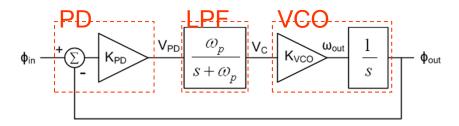
$$\xi = 0.1$$

$$\xi = 0.3$$

$$\xi = 0.7$$

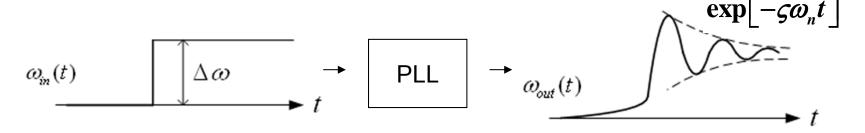
$$\xi = 1.5$$

$$H(s) = \frac{\phi_{out}(s)}{\phi_{in}(s)} = \frac{\omega_n^2}{s^2 + 2\varsigma\omega_n s + \omega_n^2} \qquad \phi_{in} \xrightarrow{+ \varsigma } V_{PD}$$

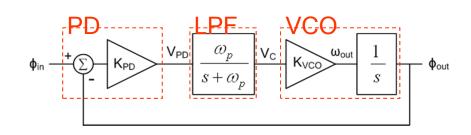


$$\frac{\omega_{out}(s)}{\omega_{in}(s)} = \frac{s\phi_{out}(s)}{s\phi_{in}(s)} = \frac{\omega_n^2}{s^2 + 2\varsigma\omega_n s + \omega_n^2}$$

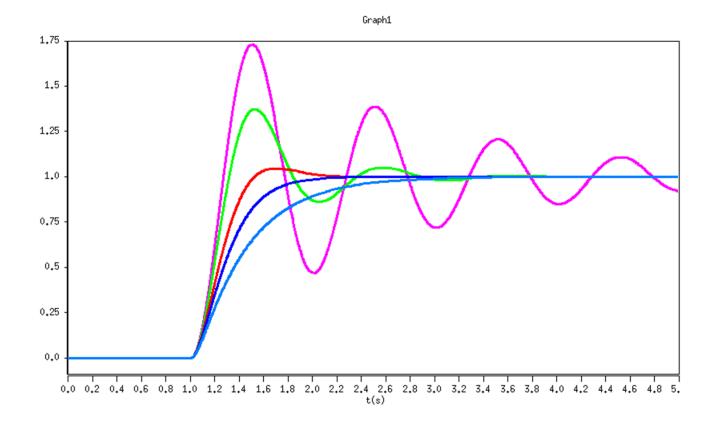
Step response: $\omega_{in}(t) = \Delta \omega \cdot u(t)$



$$\frac{\omega_{out}(s)}{\omega_{in}(s)} = \frac{\omega_n^2}{s^2 + 2\varsigma\omega_n s + \omega_n^2}$$



Step response: $\omega_{in}(t) = \Delta \omega \cdot u(t)$

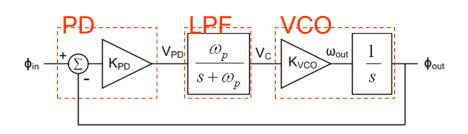


$$\omega_n = 2\pi$$

$$\xi = 0.1$$

 $\xi = 0.3$
 $\xi = 0.7$
 $\xi = 1$

$$\xi = 1.5$$



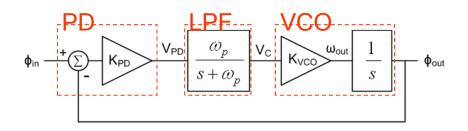
$$\frac{\omega_p}{s + \omega_p} \bigvee_{\mathsf{Vc}} \frac{\mathsf{VCO}}{\mathsf{K}_{\mathsf{VCO}}} \stackrel{\mathsf{w}_{\mathsf{out}}}{=} \frac{1}{s} \qquad H(s) = \frac{\phi_{out}(s)}{\phi_{in}(s)} = \frac{\omega_n^2}{s^2 + 2\varsigma \omega_n s + \omega_n^2}$$

- Transfer function for phase error?
$$H_e(s) = 1 - H(s) = \frac{s^2 + 2\varsigma\omega_n s}{s^2 + 2\varsigma\omega_n s + \omega_n^2}$$

- Phase error due to phase step?

$$\phi_{in}(t) = \Delta \phi \cdot u(t)$$
 $\phi_{in}(s) = \frac{\Delta \phi}{s}$

$$\phi_e(t=\infty) = \lim_{s\to 0} \left\lceil sH_e(s) \frac{\Delta \phi}{s} \right\rceil$$
 - No steady-state phase error



$$\frac{\omega_{p}}{s + \omega_{p}} \bigvee_{\text{Vc}} \frac{\text{VCO}}{\text{Vc}} \qquad H(s) = \frac{\phi_{out}(s)}{\phi_{in}(s)} = \frac{\omega_{n}^{2}}{s^{2} + 2\varsigma\omega_{n}s + \omega_{n}^{2}}$$

$$H_e(s) = \frac{s^2 + 2\varsigma\omega_n s}{s^2 + 2\varsigma\omega_n s + \omega_n^2}$$

- Phase error due to frequency step?

$$\omega_{in}(t) = \Delta \omega \cdot u(t)$$

$$\omega_{in}(s) = \frac{\Delta \omega}{s}$$

$$\phi_{in}(s) = \frac{\Delta \omega}{s^2}$$

$$\phi_e(t = \infty) = \lim_{s \to 0} \left[sH_e(s) \frac{\Delta \omega}{s^2} \right]$$
$$= \frac{2\varsigma}{\omega_n} \Delta \omega$$
$$= \frac{\Delta \omega}{K_{PD} K_{VCO}}$$