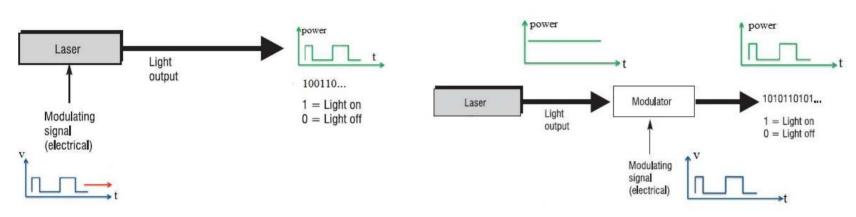
Si Photonics

Lecture 11: Si Modulators

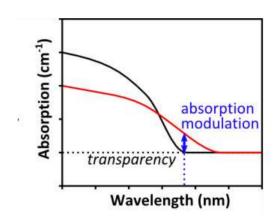
Woo-Young Choi


1885

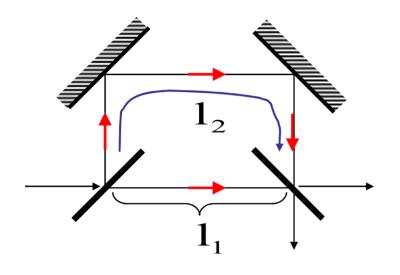
Dept. of Electrical and Electronic Engineering
Yonsei University

How to generate light signals with (digital) information?

Direct Modulation


External Modulation

- Simple
- For high-speed modulation, semiconductor laser suffers from frequency chirp (Change in lasing frequency → Suffers from fiber dispersion in long-distance optical comm.)
- No Si laser


External modulation

- I. Refractive index modulation
- II. Bandgap (absorption) modulation

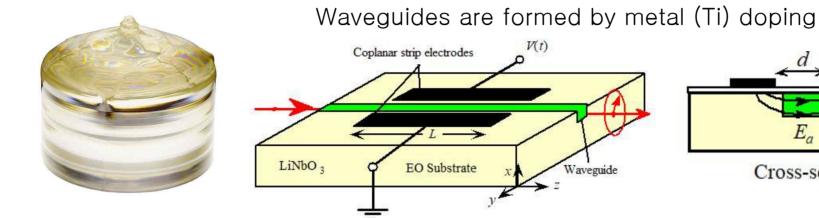
In Si photonics, Type I is often used

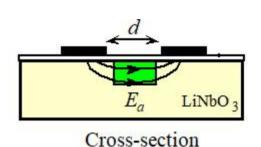
Mach-Zehnder Interferometer

$$I_{out, bottom} = \frac{I_{in}}{2} \left[1 + \cos\left(kl_1 - kl_2\right) \right]$$

What happens when (kl_1-kl_2) changes?

Output intensity changes

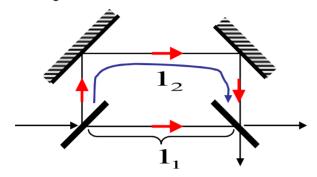

Intensity modulation

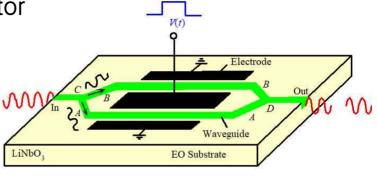

→ MZ Modulator (MZM)

MZM with waveguides?

Modulation with voltage signals?

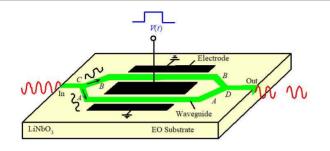
LiNbO₃ (Lithium Niobate) waveguide


Very small loss for the wavelength of interest


Refractive index of LiNbO₃ can be changed by E-field (Large linear electro-optic effect or Pockels effect)

→ Voltage controlled phase shift or delay line

EO effect is very fast (Speed is limited by electrodes)


LiNbO₃ (Lithium Niobate) MZ Modulator

$$\begin{split} I_{out} = & \frac{I_{in}}{2} \Big[1 + \cos \left(k l_1 - k l_2 \right) \Big] = > \frac{I_{in}}{2} \Big[1 + \cos \left(\beta_1 - \beta_2 \right) L \right) \Big] \qquad \beta_1 = n_{eff,1} k_o \qquad \beta_2 = n_{eff,2} k_o \end{split}$$
 With V(t),
$$n_{eff,1} = n_{eff,0} + \Delta n_{eff} \left(V(t) \right) \qquad n_{eff,2} = n_{eff,0} - \Delta n_{eff} \left(V(t) \right)$$

$$\beta_1 - \beta_2 = 2 \Delta n_{eff} \left(V(t) \right) k_o$$

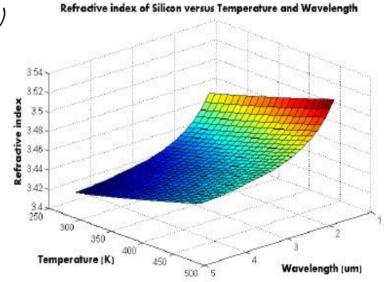
$$I_{out} = \frac{I_{in}}{2} \Big[1 + \cos \left(2 \Delta n_{eff} \left(V(t) \right) k_0 L \right) \Big]$$

→ Widely used in high-performance optical communication systems

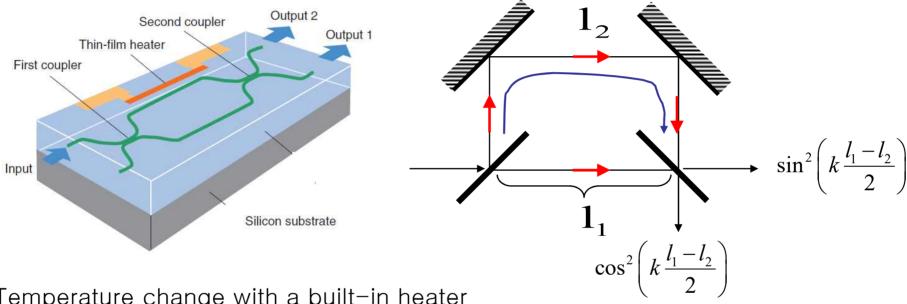
$$I_{out=} \frac{I_{in}}{2} \left[1 + \cos\left(2\triangle n_{eff}(V(t))k_0L\right) \right]$$

How to realize Si MZM?

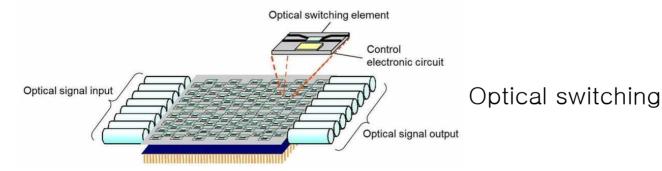
Change Si waveguide effective index with V(t)


But Si does not have any linear E-O effect

Si refractive index changes with temperature

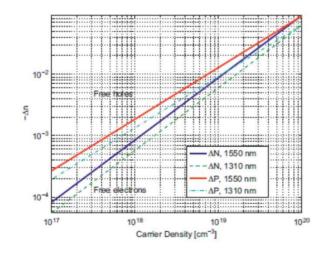

For 1500nm at RT, $dn/dT = 1.87 \times 10^{-4} \text{ K}^{-1}$

Efficient but slow


→ Used for slow switching devices

Si MZI Switch

Temperature change with a built-in heater

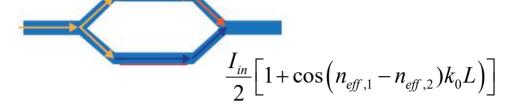

Si MZM

$$\frac{I_{in}}{2} \left[1 + \cos\left(n_{eff,1} - n_{eff,2}\right) k_0 L\right) \right]$$

How to change Si refractive index with voltage fast?

Change amount of carriers (N and P) inside Si waveguides

Plasma dispersion effect


$$\Delta n \text{ (at 1550 nm)} = -8.8 \times 10^{-22} \Delta N - 8.5 \times 10^{-18} \Delta P^{0.8}$$

 $\Delta n \text{ (at 1310 nm)} = -6.2 \times 10^{-22} \Delta N - 6 \times 10^{-18} \Delta P^{0.8}$.

(Soref and Benett)

More carriers → Smaller refractive index

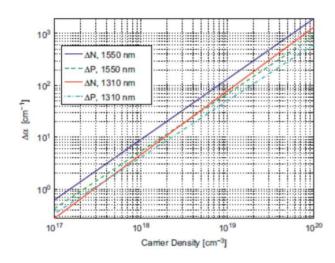
How to change N, P?

Forward-biased PIN Junction

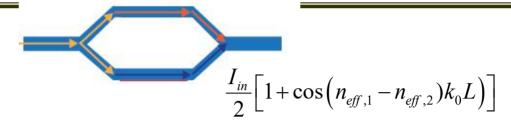
More carriers

Smaller refractive index

→ Smaller effective index

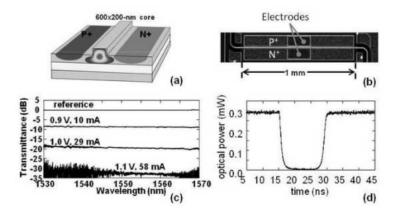

Very efficient

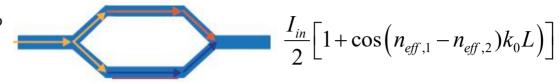
But not fast enough due to carrier life time (~ 1 nsec)


Injected carriers induce loss

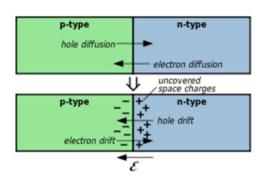
How to change N, P?

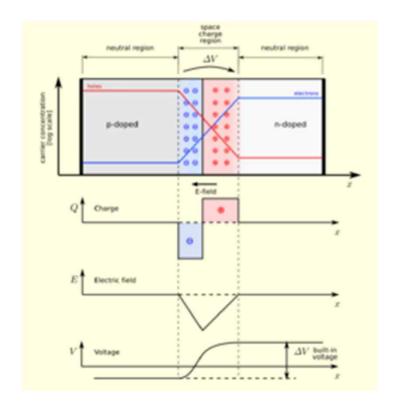
Forward-biased PIN Junction

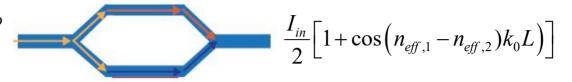

→ Variable Optical Attenuator


$$\Delta \alpha$$
 (at 1550 nm) = 8.5 × 10⁻¹⁸ ΔN + 6 × 10⁻¹⁸ ΔP [cm⁻¹]
 $\Delta \alpha$ (at 1310 nm) = 6 × 10⁻¹⁸ ΔN + 4 × 10⁻¹⁸ ΔP [cm⁻¹],

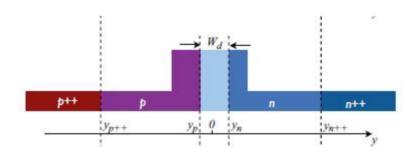
Refractive index change ←→ Loss change


(Kramers-Kronig relationship)


How to change N, P very fast?


Reversed-Biased PN Junction

Formation of depletion region Between P and N regions



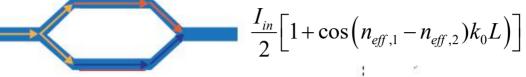
How to change N, P very fast?

Reverse-biased PN Junction

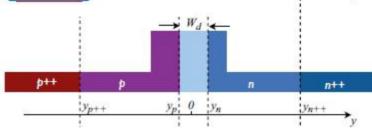
Assuming uniform abrupt junction

$$W_d = \sqrt{\frac{2\epsilon_0 \epsilon_s (N_A + N_D)(V_{bi} - V)}{q N_A N_D}}$$

With larger reverse bias, larger W_d


Less plasma dispersion effect because less carriers interact with guided light

Larger refractive index

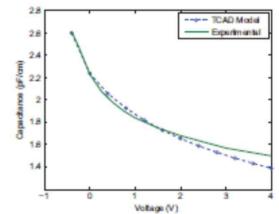

Not as efficient as thermal, PIN phase shifter

→ Larger effective index

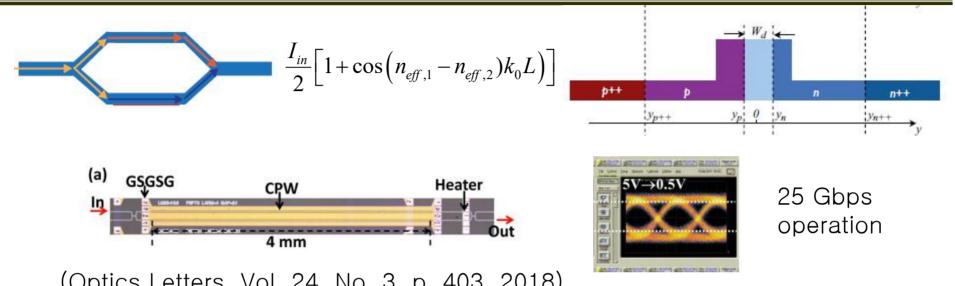
How to change N, P very fast?

Reverse-biased PN Junction

$$W_d = \sqrt{\frac{2\epsilon_0 \epsilon_s (N_A + N_D)(V_{bi} - V)}{q N_A N_D}}$$


Frequency response:

Dominated by RC time constant


R: Series resistance

C: Junction capacitance = Area x ε_{si} / W_d

$$\sim \sqrt{\frac{q\epsilon_0\epsilon_s}{2(1/N_D+1/N_A)(V_{bi}-V)}}$$

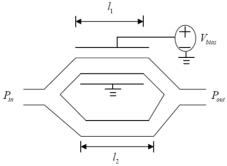
→ Most popular method for high-speed Si phase shifter

(Optics Letters, Vol. 24, No. 3, p. 403, 2018)

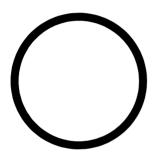
Built-in heater required → Compensating phase shift due to process variation

Very long → Requires transmission line electrodes with impedance termination

Smaller Si modulator?


Homework #1

Consider a Mach-Zehnder interferometer shown below. The effective index that $1.5 \, \mu m$ light experiences while traveling inside the interferometer is 3.5 when no bias voltage is applied. Due to manufacturing problems, $l_1 = 100 \, \mu m$ and $l_2 = 100.1 \, \mu m$ are not the same.


(a) What is the output power when the input power is lmW at $1.5 \mu m$ and no bias is applied? Assume P_{out} has cos^2 dependence on P_{in} .

We want to use the interferometer as an optical on/off switch by applying voltage to the upper arm as shown. The effective index of the upper arm increases 0.001 per 1 volt applied.

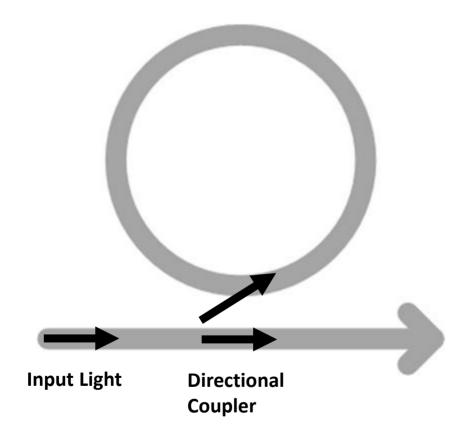
(b) What is the voltage with the smallest absolute value that needs to be applied to make the switch on?

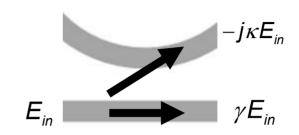
Consider a ring waveguide

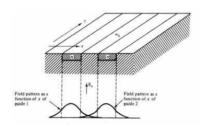
Assuming there is light circulating inside the ring

Resonance condition:

$$e^{-j\beta(2\pi r)} = 1$$

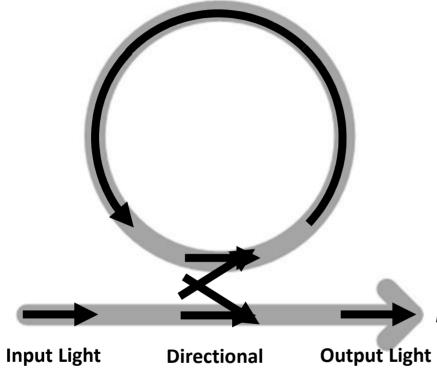

$$n_{eff} \, rac{2\pi}{\lambda} \, 2\pi r = 2m\pi \qquad \qquad L = m rac{\lambda}{n_{eff}}$$


What can we do with this?


Effectively F-P resonator

How to couple light in and out?

• Ring Interferometer (Top View)


With only one input

$$\begin{bmatrix} a_1(z) \\ a_2(z) \end{bmatrix} \sim \begin{bmatrix} -j\sin(\kappa'z) \\ \cos(\kappa'z) \end{bmatrix}$$

$$\gamma = \cos(\kappa'd)$$
 $\kappa = \sin(\kappa'd)$

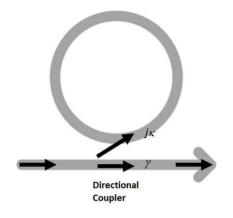
$$(\gamma^2 + \kappa^2 = 1)$$

Ring Interferometer (Top View)

Coupler

 $-j\kappa E_{in}$ γE_{in} $(\gamma^2 + \kappa^2 = 1)$

 α : amount after one circulation

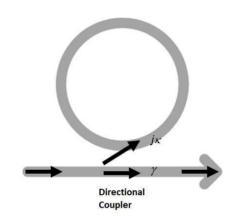

L: ring circumference

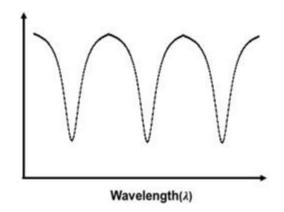
$$E_{out} = E_{in} \gamma + E_{in} (-j\kappa) (\alpha e^{-jn_{eff}k_0L}) (-j\kappa)$$

$$+ E_{in} (-j\kappa) (\alpha e^{-jn_{eff}k_0L}) \gamma (\alpha e^{-jn_{eff}k_0L}) (-j\kappa)$$

- - -

Ring Interferometer




$$E_{out} = E_{in} \gamma + E_{in} (-j\kappa) (\alpha e^{-jn_{eff}k_0L}) (-j\kappa)$$
$$+ E_{in} (-j\kappa) (\alpha e^{-jn_{eff}k_0L}) \gamma (\alpha e^{-jn_{eff}k_0L}) (-j\kappa)$$

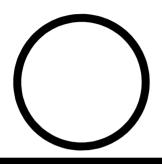
$$(\beta = n_{eff}k_0)$$

$$\frac{E_{out}}{E_{in}} = \gamma - \kappa^2 \alpha e^{-j\beta L} - \kappa^2 \alpha^2 \gamma e^{-j2\beta L} - \kappa^2 \alpha^3 \gamma^2 e^{-j3\beta L} - \cdots$$

$$= \gamma - \kappa^2 \sum_{n=1}^{\infty} \alpha^n \gamma^{n-1} e^{-jn\beta L} = \gamma - \frac{\kappa^2 \alpha e^{-j\beta L}}{1 - \alpha \gamma e^{-j\beta L}} = \frac{\gamma - \alpha e^{-j\beta L}}{1 - \alpha \gamma e^{-j\beta L}}$$

Ring Interferometer
$$E_{out} = E_{in} \gamma + E_{in} (-j\kappa) (\alpha e^{-j\beta L}) (-j\kappa) + E_{in} (-j\kappa) (\alpha e^{-j\beta L}) \gamma (\alpha e^{-j\beta L}) (-j\kappa) + \dots$$

$$\frac{E_{out}}{E_{in}} = \frac{\gamma - \alpha e^{-j\beta L}}{1 - \alpha \gamma e^{-j\beta L}} \qquad T = \left| \frac{E_{out}}{E_{in}} \right|^2 = \frac{\alpha^2 + \gamma^2 - 2\alpha \gamma \cos(\beta L)}{1 + (\alpha \gamma)^2 - 2\alpha \gamma \cos(\beta L)}$$

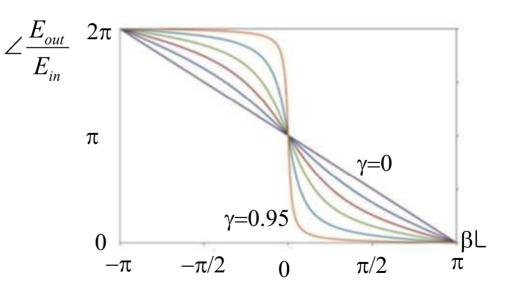

It can be shown min. transmission occurs when $\beta L = 2m\pi$ (Resonance condition)

$$n_{eff} \frac{2\pi}{\lambda} L = 2m\pi$$
 $L = m \frac{\lambda}{n_{eff}}$ $T = \left| \frac{E_{out}}{E_{in}} \right|^2 = \frac{(\alpha - \gamma)^2}{(1 - \alpha \gamma)^2}$

T=0 if $\gamma=\alpha$; critical coupling

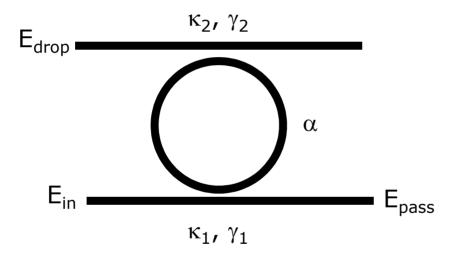
 $\gamma < \alpha$; over coupling

 $\gamma > \alpha$; under coupling

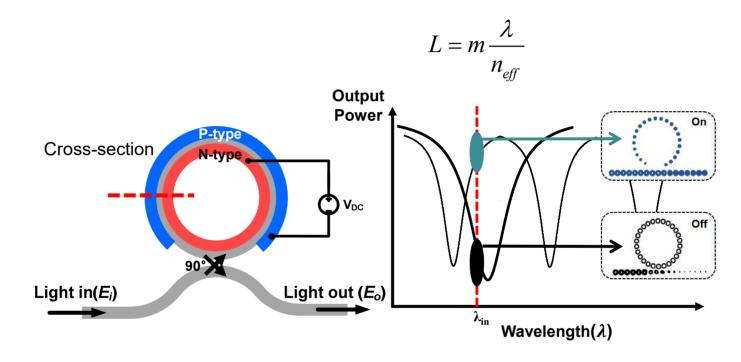

What good is this?

If
$$\alpha=1$$
,
$$\frac{E_{out}}{E_{in}}=\frac{\gamma-e^{-j\beta L}}{1-\gamma e^{-j\beta L}} \quad T=\frac{\alpha^2+\gamma^2-2\alpha\gamma\cos(\beta L)}{1+(\alpha\gamma)^2-2\alpha\gamma\cos(\beta L)} = 1$$

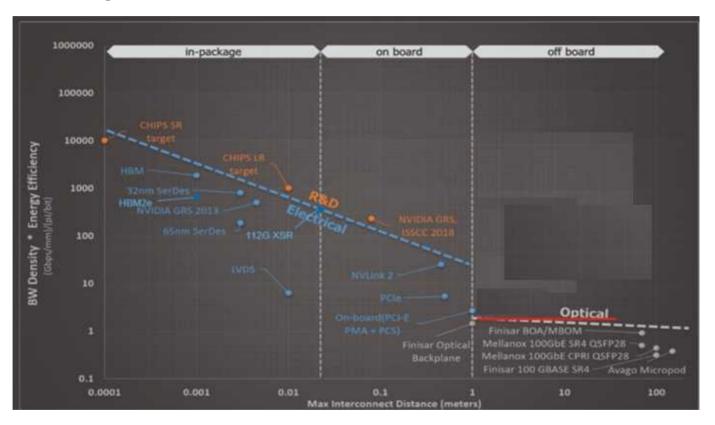
Phase-domain filter


→ Optical All-Pass Filter

Optical Delay Line


Homework #2

Consider a ring interferometer consisting of two directional couplers, top and bottom, shown below.



- (a) Determine the expression for E_{pass}/E_{in}
- (b) What is the FSR in terms of wavelength for this interferometer?
- (c) What is the FSR of this interferometer if n_{eff} changes with the wavelength , or $dn_{eff}/d\lambda$ is not zero?

Si intensity modulator based on ring interferometer?

Interconnect Figure of Merit

(Darpa)

Si photonics is expected to close the gap and improve overall performance