Characteristics of InP HEMT Harmonic Optoelectronic Mixers and Their Application to 60GHz Radio-on-Fiber Systems

Chang-Soon Choi1, Hyo-Soon Kang1, Dae-Hyun Kim2, Kwang-Seok Seo2 and Woo-Young Choi1

1Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 120-749, Korea
2School of Electrical Engineering, Seoul National University, Seoul, 151-741, Korea

Abstract — We present device characteristics of InP HEMT as a harmonic optoelectronic mixer. A single InP HEMT device performs photodetection of optically transmitted data, and frequency up-conversion of them into 60GHz band. Several mixer performance characteristics are investigated and 622Mbps data transmission in 60GHz radio-on-fiber system is successfully demonstrated using InP HEMT harmonic optoelectronic mixer.

Index Terms — millimeter-wave, radio-on-fiber system, InP HEMT, optoelectronic mixer, optoelectronic integration.

I. INTRODUCTION

The needs for broadband wireless communication have grown much interest in millimeter-wave frequency bands, especially 60GHz, because of its wide transmission bandwidth and the possibility of efficient frequency reuse. However, their use is not yet widespread due to difficulties in millimeter-wave generation, transmission and processing. With development of fiber-optic technologies, radio-on-fiber systems which utilize optical fibers as low loss and highly flexible transmission medium have been investigated as a solution for these problems [1].

In millimeter-wave radio-on-fiber systems, a large number of antenna base stations are located within the coverage of a single central office in order to compensate high transmission loss of millimeter-waves. Consequently, it is important to come up with low cost and simple antenna base station architecture for practical implementation of these radio-on-fiber systems.

One attractive approach is the one-chip integration of a photodetector and other RF components that are required in antenna base station. Indium-phosphide high-electron mobility transistors (InP HEMTs) are very useful devices for this optoelectronic integration because they can perform photodetection to 1.55µm light with high internal gain while maintaining compatibility to conventional MMIC process [2]. In addition, they can provide additional functionalities such as optoelectronic mixing and optical injection-locked oscillation [2-3].

In this paper, we present detailed characteristics of a harmonic optoelectronic mixer based on a single InP HEMT and its application to 60GHz radio-on-fiber systems. The photodetection mechanism for the InP HEMT is first identified and it is experimentally demonstrated that the InP HEMT can be operated as a 60GHz harmonic optoelectronic mixer. Such optoelectronic mixer performance characteristics as internal conversion gain and local oscillator (LO) frequency ranges are investigated and 622Mbps data transmission in 60GHz radio-on-fiber system is demonstrated.

II. PHOTODETECTION CHARACTERISTICS

Epitaxial layers for the HEMT used for our investigation are schematically shown in Fig. 1. It has a pseudomorphic In\textsubscript{0.65}Ga\textsubscript{0.35}As channel in order to improve electrical device performance at the millimeter-wave operation. With 0.1µm gate-length, it exhibits the maximum transconductance of 720mS/mm, the current-gain cutoff frequency (f\textsubscript{T}) of 165GHz and the maximum oscillation frequency (f\textsubscript{MAX}) of 95GHz at the gate bias of -0.4V and the drain bias of 1V.

![Layer structure of InP pseudomorphic HEMT](image)

1.55µm photodetection characteristics were analyzed with the semiconductor parameter analyzer (HP4145B), the network analyzer (HP8722D) with optical signals at 1552nm provided by a DFB laser. The light was illuminated from the backside of InP substrate with a...
single-mode lensed fiber which provides the coupling efficiency of approximately 10%. Since InP substrate and InAlAs buffer layer are transparent to 1.55µm light, optical absorption occurs only at In$_{0.65}$Ga$_{0.35}$As and In$_{0.53}$Ga$_{0.47}$As channels.

![Fig. 2. I$_D$ versus V$_G$ under dark and illuminated conditions](image)

Fig. 2. shows measured drain-currents (I$_D$) as a function of gate-voltages (V$_G$) under dark and illuminated conditions. The InP HEMT shows a negative shift in threshold voltages as well as increase in I$_D$ with increasing incident optical powers. It has been reported that these threshold voltage shifts are due to the photovoltaic effect caused by photo-generated holes in the channel [3-5].

Since the gate voltage is effectively modulated with the photovoltaic effect, internal gain is provided making the HEMT a phototransistor. Even when V$_G$ is lower than the threshold voltage, namely at turn-off condition, small increase in I$_D$ is observed with illumination as can be seen in the figure. This is due to the photoconductive effect in which photo-generated electrons increase the channel conductivity and, thus, increase I$_D$. It should be noted that it does not provide any internal gain since the HEMT is off. These photodetection characteristics are affirmed by Fig. 3 which shows the InP HEMT optical modulation responses for both turn-on and turn-off conditions. Because the photovoltaic effect is dominated by the lifetime of photo-generated holes, the photoresponse for turn-on condition has relatively small optical 3dB bandwidth of about 560MHz. On the other hand, for turn-off condition, the photoresponse has much larger 3dB bandwidth because photoconductive effect is dominated by photo-generated electrons having much short life-time. Since the HEMT does not operate as a transistor in turn-off condition, it performs only photodetection without any internal gain. By utilizing this dependence of photodetection characteristics on bias conditions, we can determine the internal gain provided by the HEMT as a phototransistor by measuring photoresponses at both turn-off and turn-on conditions under the identical optical illumination condition, and taking their differences as shown in Fig. 3. In our experiments, 38dB internal gain is obtained at 100MHz optical modulation frequency. For its uses as a phototransistor and an optoelectronic mixer, InP HEMT should be at turn-on condition for providing internal gain. These optical modulation responses directly affect the photodetection bandwidth of optically transmitted intermediate frequency (IF) with data. It can be seen from the figure that IF up to the GHz range can have high internal gain, which should be sufficient for many applications.

![Fig. 3. Optical modulation responses of InP HEMT under turn-on condition (V$_G$=-0.6V) and turn-off condition (V$_G$=-2V)](image)

![Fig. 4. InP HEMT harmonic optoelectronic mixer and its 60GHz frequency up-conversion spectrum under applying 30GHz LO and optical 100MHz IF.](image)

With a single InP HEMT device, it is possible to realize photodetection and harmonic optoelectronic up-conversion simultaneously [5]. Fig. 4 shows the schematic diagram for utilizing the InP HEMT as a harmonic
optoelectronic mixer and its up-converted output spectrum at 60GHz. It can be seen that there are harmonic optoelectronic mixing products at $2f_{LO}+f_{IF}$ (60.1GHz) and $2f_{LO}-f_{IF}$ (59.9GHz) and 2nd harmonic of LO at $2f_{LO}$ (60GHz) with 30GHz LO and optical 100MHz IF. With this harmonic up-conversion, lower frequency LO can be used making the implementation of base station easier.

Conversion gain is an important parameter for the performance of a frequency up-converter. In the case of an optoelectronic mixer, it is difficult to determine the conversion gain accurately since the actually absorbed optical IF power in HEMT is not accurately known. Instead, we define the internal conversion gain which is the power ratio of $2f_{LO}+f_{IF}$ and $2f_{LO}-f_{IF}$ optoelectronic up-converted signals to the photodetected f_{IF} signal without internal gain, which can be measured at turn-off condition as mentioned earlier.

Since the measurement sensitivity at 60GHz band is limited by high background noise level of the external V-band harmonic mixer (Agilent 11974V) used for our measurement, the experiments were first carried out in the 20GHz band with 10GHz LO having 0dBm power and 100MHz optical IF signals. Fig. 5 shows the internal conversion gain for $f_{LO}+f_{IF}$ and $2f_{LO}+f_{IF}$ components as a function of V_G. The photodetected f_{IF} signal power without internal gain is -49dBm measured at $V_G=-2$V. The non-monotonic curves for optoelectronic up-conversion efficiencies are attributed to the nonlinearity of transconductance of the HEMT. It should be noted that the maximum 20dB internal conversion gain for harmonic optoelectronic up-conversion at $2f_{LO}+f_{IF}$ was obtained at V_G of -0.9V while suppressing undesired mixing component at $f_{LO}+f_{IF}$. In this V_G condition, the output RF spectra at 10GHz and 20GHz bands are shown in Fig. 6. It can be seen that the output power of $2f_{LO}+f_{IF}$ is much larger than that of $f_{LO}+f_{IF}$.

For its use at millimeter-wave band, we measured the internal conversion gain for $2f_{LO}+f_{IF}$ as a function of applied LO frequencies and the results are shown in Fig. 7. Measurement was not taken from 40GHz to 50GHz due to the lack of external harmonic mixer for these frequency bands. In our experiments, the InP HEMT as a harmonic optoelectronic mixer exhibits wide LO frequency ranges which are well extended to the millimeter-wave band. The origins for slightly decreased internal conversion gain as increasing LO frequency are due to the reduction in S_{21} indicating forward power gain and increased loss of RF components which were guaranteed below 50GHz. Nevertheless, the internal conversion gain of 18dB is obtained at 60GHz band.
IV. 60GHz Radio-on-Fiber System

To investigate the feasibility of using InP HEMT as a 60GHz harmonic optoelectronic mixer in a radio-on-fiber (RoF) system, a remote up-conversion 60GHz RoF downlink transmission system was constructed as shown in Fig. 8. Optical data channel produced by a DFB laser directly modulated with 622Mbs NRZ pseudo-random bit sequence \((2^{15}-1)\) was transmitted from the central station to the base station. The optically transmitted data were then frequency up-converted to 60GHz band using the InP HEMT harmonic optoelectronic mixer with the optimal bias conditions and 30GHz, -6dBm LO. The optimal bias condition was experimentally confirmed to be same as those determined at 20GHz. The output signal at drain port was amplified by 17dB LNA and radiated from the horn antenna with the 20dB gain. After 3m wireless transmission, the received signals were demodulated using the direct detection technique with a Schottky diode. Clear eye-opening was observed for the recovered data as shown in Fig. 9-(A). In addition, the link performance was evaluated by measuring the bit error rate (BER) as a function of coupled-in powers to the InP HEMT, which are estimated to be 10% of incident optical power. Fig. 9-(B) shows the experimental results for BER performance of 60GHz radio-on-fiber links. Error-free transmission was achieved at the coupled-in optical power of 4dBm.

V. Conclusion

In this work, we investigated characteristics of a InP HEMT as a millimeter-wave harmonic optoelectronic mixer and demonstrated 622Mbps data transmission in 60GHz radio-on-fiber system by utilizing it. Based on the photodetection mechanism in the InP HEMT, we defined internal conversion gain and investigated its dependence on \(V_G\) for the maximum harmonic optoelectronic mixing efficiency. At 60GHz band, internal conversion gain of 18dB was obtained. It is expected that InP HEMTs can be useful in simplifying antenna base station architecture in 60GHz radio-on-fiber system.

Fig. 8. 60GHz radio-on-fiber systems utilizing InP HEMT as a harmonic optoelectronic mixer

REFERENCES

Session TU1A
Advances in Low Noise Silicon Technology & Applications

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00am</td>
<td>TU1A-1</td>
<td>RF Noise Scaling Trend of MOSFETs from 0.5 μm to 0.13 μm Technology Nodes</td>
<td>M.-C. King, M.-T. Yang, C.-W. Kuo, Y. Chang, and A. Chin</td>
</tr>
<tr>
<td>8:20am</td>
<td>TU1A-2</td>
<td>A Low Power DC-7.8 GHz BICMOS LNA for UWB and Special Communication</td>
<td>F. Ellinger, D. Barras, M. Schmatz, and H. Jackel</td>
</tr>
<tr>
<td>8:40am</td>
<td>TU1A-3</td>
<td>Noise Performance of 90 nm CMOS Technology</td>
<td>D. Bocher, G. Banerjee, R. Basco, C. Hung, K. Kuhn, and W.-K. Shih</td>
</tr>
<tr>
<td>9:00am</td>
<td>TU1A-4</td>
<td>Low Noise, and High Gain Wideband Amplifier Using SiGe HBT Technology</td>
<td>R. Chan and M. Feng</td>
</tr>
</tbody>
</table>

Session TU2A
Non Linear Device Modeling

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00am</td>
<td>TU2A-1</td>
<td>Enhanced Prediction of pHEMT Nonlinear Distortion Using a Novel Charge Conservative</td>
<td>M. Wren and T.J. Brazil</td>
</tr>
<tr>
<td>8:20am</td>
<td>TU2A-2</td>
<td>A Symmetric and Thermally-de-Embedded Nonlinear FET Model for Wireless and Microwave</td>
<td>J. Wood and D. Root</td>
</tr>
<tr>
<td>8:40am</td>
<td>TU2A-3</td>
<td>A New Physics Based Dynamic Electro Thermal Large Signal Model for RF LDMOS FETS</td>
<td>M. Versicijen, V. Bloem, A. van Steenwijk, and O. Yanson</td>
</tr>
<tr>
<td>9:00am</td>
<td>TU2A-4</td>
<td>Large-Signal HBT Model Requirements to Predict Nonlinear Behaviour</td>
<td>M. Rudolph and R. Doerner</td>
</tr>
<tr>
<td>9:10am</td>
<td>TU2A-5</td>
<td>Effects of Bias and Load Conditions on Dynamic Self Heating of Bipolar Transistors</td>
<td>S. Cherepko, J. Hwang, and W. Curtice</td>
</tr>
<tr>
<td>9:20am</td>
<td>TU2A-6</td>
<td>New Nonlinear Device Model for Microwave Power GaN HEMTs</td>
<td>P. Cabral, J. Pedro, and N. Carvalho</td>
</tr>
</tbody>
</table>
Session TU3A

Theory and Design of Power Dividers

Room BallC
Chair: C. Nguyen, National Science Foundation
Co-chair: A. Fathy, University of Tennessee

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TU3A-1</td>
<td>Reconfigurable Power Divider and Combiner with Variable Power Ratio</td>
<td>57</td>
</tr>
<tr>
<td>8:00 AM</td>
<td>K.T. Kim, Y. Chung, J.H. Kang, T. Itoh, and D. Ahn</td>
<td></td>
</tr>
<tr>
<td>TU3A-2</td>
<td>3-way Low Loss Phase Combiner for Power Amplifier Sharing in 3-Sector Cellular Networks</td>
<td>61</td>
</tr>
<tr>
<td>8:20 AM</td>
<td>C. Metz and T. Baras</td>
<td></td>
</tr>
<tr>
<td>TU3A-3</td>
<td>General Design Equations of N-Way Arbitrary Power Dividers</td>
<td>65</td>
</tr>
<tr>
<td>8:40 AM</td>
<td>H.-R. Ahn, K. Lee, and N-H. Myung</td>
<td></td>
</tr>
<tr>
<td>TU3A-4</td>
<td>A Design of Multi-Stage, Multi-Way Microstrip Power Dividers with Broadband Properties</td>
<td>69</td>
</tr>
<tr>
<td>9:00 AM</td>
<td>M. Kishihara, K. Yamane, I. Ohta, and T. Kawai</td>
<td></td>
</tr>
<tr>
<td>TU3A-5</td>
<td>A Simplified Approach for the Design of Radial Power Combining Structures</td>
<td>73</td>
</tr>
<tr>
<td>9:20 AM</td>
<td>A.E. Fathy and D. Kalokitis</td>
<td></td>
</tr>
</tbody>
</table>

Session TU4A

Spatial Power Combining and Quasi-Optical Techniques

Room 202CD
Chair: K. Mizuno, Tohoku University
Co-chair: J. Hacker, Rockwell Scientific

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TU4A-1</td>
<td>A Single Chip Two-stage W-band Grid Amplifier</td>
<td>79</td>
</tr>
<tr>
<td>8:00 AM</td>
<td>C.-T. Cheung, M. DeLisio, J. Rosenberg, R. Tsai, R. Kagiwada, and D. Rutledge</td>
<td></td>
</tr>
<tr>
<td>TU4A-2</td>
<td>A Ka-Band Grid Amplifier Module with Over 10 Watts Output Power</td>
<td>83</td>
</tr>
<tr>
<td>TU4A-3</td>
<td>A Dual Polarized Millimeter-Wave Multibeam Phased Array</td>
<td>87</td>
</tr>
<tr>
<td>8:40 AM</td>
<td>A. Al-Zayed, L. Schulwitz, and A. Mortazawi</td>
<td></td>
</tr>
<tr>
<td>TU4A-4</td>
<td>Power Combining by Means of Harmonic Injection Locking</td>
<td>91</td>
</tr>
<tr>
<td>9:00 AM</td>
<td>M.R. Kuhn and E.M. Biebl</td>
<td></td>
</tr>
<tr>
<td>TU4A-5</td>
<td>An X-Band Spatial Power Combiner Using a Planar Array of Stacked Patches for Bandwidth</td>
<td>95</td>
</tr>
<tr>
<td>9:20 AM</td>
<td>Enhancement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F.-C.E. Tsai and M.E. Bialkowski</td>
<td></td>
</tr>
</tbody>
</table>
Session TU5A
Mixed signal circuits from 10 to 144Gb/s

Room 201A
Chair: S. Marsh, Bookham Technology
Co-chair: J. P. Mattia, Tarkus Consulting

TU5A-1 A 24-Gsps 3-bit Nyquist ADC using InP HBTs for Electronic Dispersion Compensation
8:00 AM H. Nosaka, M. Nakamura, M. Ida, K. Kurushima, T. Shibata, M. Tokumitsu, and M. Muraguchi
TU5A-2 A 0.18um CMOS Equalizer with Improved Multiplier for 4-PAM/20Gb/s Throughput Over 20-
8:20 AM Inch FR-4 Backplane Channel
 M. Maeng, F. Bien, Y. Hur, S. Chandramouli, H. Kim, Y. Kumar, C. Chun, E. Gebara, and J. Laskar
TU5A-3 10-Gb/s Electrical Backplane Transmission using Duobinary Signaling
8:40 AM J. Sinsky, A. Adamiecki, and M. Duelk
TU5A-4 DFF-Drivers ICs for 40 Gb/s ETDM in InP DHBT Technology
9:00 AM A. Konczykowska, F. Jorge, M. Riet, S. Blayac, J. Moulu, and J. Godin
TU5A-5 144-Gbit/s Selector and 100-Gbit/s 4:1 Multiplexer Using InP HEMTs

Session TU6A
Microwave Superconducting Components and Circuits.

Room 202AB
Chair: M. Lancaster, The University of Birmingham
Co-chair: C. Jackson, Raytheon Pace and Airborne Systems

TU6A-1 Hilbert Fractal Curves for HTS Miniaturized Filters
8:00 AM M. Barra, C. Collado, J. Mateu, and J. O'Callaghan
TU6A-2 An HTS Lumped-Element Notch Filter
8:20 AM K. Dustakar and S. Berkowitz
TU6A-3 Switched Superconductive Filter-Banks
8:40 AM S.F. Peik, B. Jolley, and R. Mansour
TU6A-4 Characterizing a Double-Spiralled Meander Superconducting Microstrip Delay Line using a
8:50 AM Resonator Technique
 H.T. Su, Y. Wang, F. Huang, and M. Lancaster
TU6A-5 A Superconducting Microwave Power Limiter for High-Performance Receiver Protection
9:10 AM J.C. Booth, K. Leong, and S. Schima
TU6A-6 HTS Sensors for NQR Spectroscopy
 and J.L. Schiano
Session TU1C
Advances in Low Noise HEMT Technology
1:20pm – 3:00pm
Room 200
Chair: T. Cisco, Raytheon
Co-chair: M. Gupta, San Diego State University

TU1C-1 1:20 PM X-band GaAs mHEMT LNAs With 0.5 dB Noise Figure 149
M. Heins, J. Carroll, M-Y. Kao, J. Delaney, and C. Campbell

TU1C-2 1:40 PM Wideband AlGaN/GaN HEMT MMIC Low Noise Amplifier 153
G. Ellis, J. Moon, D. Wong, M. Micovic, A. Kurdoghlian, P. Hashimoto, and M. Hu

TU1C-3 2:00 PM High Performance and High Reliability InP HEMT Low Noise Amplifiers for Phased-Array 157

TU1C-4 2:20 PM Cryogenic 2-4 GHz Ultra Low Noise Amplifier 161

Session TU2C
Frequency Convopversion and Signal Control
Room 201BC
Chair: B. Nelson, Sirensa Microdevices
Co-chair: M. Madihian, NEC Labs America, Inc.

TU2C-1 1:20 PM A DC-100 GHz Frequency Doubler in InP DHBT Technology 167
V. Puyal, A. Koneczykowska, P. Nouet, S. Bernard, S. Blayac, F. Jorge, M. Riet, and J. Godin

TU2C-2 1:40 PM A Highly Integrated Ka-band MMIC Quadrupler 171
K. Kamozaki, T. Bos, and E. Camargo

TU2C-3 2:00 PM A Frequency Doubler with High Conversion Gain and Good Fundamental Suppression 175
F. Gruson, G. Bergmann, and H. Schumacher

TU2C-4 1:50 PM 40 and 60 GHz Frequency Doublers in 90-nm CMOS 179
M. Femond, B.M. Motlagh, and H. Zirath

TU2C-5 2:20 PM 60-GHz-band Intentional LO-leakage APDP Mixer for SSB Self-Heterodyne Transmitter 183
S. Kishimoto, K. Maruhashi, M. Ito, Y. Hamada, and K. Ohata

TU2C-6 2:40 PM A Q-band Miniaturized Uniplanar MMIC HEMT Mixer 187
C-H. Wang, Y-S. Lin, H. Wang, and C.H. Chen

TU2C-7 2:50 PM A Ku-band MOSFET Phase Shifter MMIC 191
H.D. Lee, D.W. Kang, C-H. Kim, and S. Hong
Session TU3C

Novel Microwave and Millimeter-Wave Components

Room BallC
Chair: T. Itoh, University of California at Los Angeles
Co-chair: J. Taub, Consultant

TU3C-1 1:20 PM
On-Chip High-Q Cu Inductors Embedded In Wafer-Level Chip-Scale Package for Silicon RF

TU3C-2 1:40 PM
Integrated Transmission Line Transformer
J. Horn and G. Boeck

TU3C-3 2:00 PM
Si-based Inductors and Transformers for 30-100 GHz Applications
T. Dickson, M-A. LaCroix, S. Boret, D. Gloria, R. Beerkens, and S. Voinigescu

TU3C-4 2:20 PM
Design of Compact Planar Antennas using LH-Transmission Lines
M. Schuessler, J. Freese, and R. Jakoby

TU3C-5 2:40 PM
Compact Folded-Waveguide Resonators
J-S. Hong

Session TU4C

Millimeter-Wave MMIC Components and Subsystems

Room 202CD
Chair: D. Choudhury, HRL Laboratories, LLC
Co-chair: E. Niehenke, Niehenke Consulting

TU4C-1 1:20 PM
High-Receiving-Sensitivity 70-GHz Band MMIC Transceiver: Application of Receiving-Module-Arrayed Self-Heterodyne Technique
Y. Shoji and H. Ogawa

TU4C-2 1:40 PM
SiGe-Based Circuits for Sensor Applications beyond 100 GHz

TU4C-3 2:00 PM
Design and Analysis of a W-band Multiplier Chipset
J. Lynch, E. Entchev, B. Lyons, A. Tessmann, H. Massler, A. Leuther, and M. Schlechtweg

TU4C-4 2:20 PM
W-Band InP DHBT MMIC Power Amplifiers
G. Ellis, A. Kurdoghlian, R. Bowen, M. Wetzel, and M. Delaney

TU4C-5 2:40 PM
Design and Analysis of a Miniature W-Band MMIC Subharmonically Pumped Resistive Mixer
M-F. Lei, P-S. Wu, T-W. Huang, and H. Wang
Session TU5C
Design and Characterization of Ferrite and Ferroelectric Devices

Room 201A
Chair: B. Elsharawy, Arizona State University
Co-chair: B. York, University of California, Santa Barbara

TUSC-1 1:20 PM TUSC-3 1:40 PM TUSC-4 2:00 PM
TUSC-2 1:40 PM TUSC-5 1:50 PM TUSC-6 2:30 PM TUSC-7 2:40 PM TUSC-8 2:50 PM

TUSC-1 Numerical Studies about the Temperature Compensation of Microwave Circulators T. Lingel 241
TUSC-2 Lumped Element Isolator with Lower-Symmetrical Configuration of Three Windings S. Takeda, H. Mikami, and Y. Sugiyama 245
TUSC-3 Nonreciprocal Left-Handed Microstrip Lines Using Ferrite Substrate M. Tsubumi and T. Ueda 249
TUSC-4 A New Concept for Functional Electromagnetic Cell Material for Microwave and Millimeter Use Y. Kotsuka and M. Amano 253
TUSC-5 Design of Ferroelectric Phase Shifters for Minimum Performance Variation over Temperature D. Kim, S-S. Je, J.S. Kenney, and P. Marry 257
TUSC-6 Analog Tunable Matching Network using Integrated Thin-Film BST Capacitors V. Chen, R. Forse, D. Chase, and R.A. York 261
TUSC-7 On-wafer Microwave Characterization of Ferroelectric Thin Film Phase Shifters P.M. Suberman, T. Jackson, Y. Koutsonas, R.A. Chakalov, and M. Lancaster 265
TUSC-8 Microwave Measurement and Modeling of Capacitors with Tunable Dielectric Constants N. Cramer, E. Philofsky, L. Kammerdiner, and T.S. Kalkur 269

Session TU6C
Microwave Generation by Optical Techniques

Room 202AB
Chair: A. Madjar, Drexel University
Co-chair: T. Berceli, Technical University of Budapest

TU6C-1 1:20 PM TU6C-2 1:40 PM TU6C-3 1:50 PM TU6C-4 2:10 PM TU6C-5 2:30 PM TU6C-6 2:40 PM
TU6C-7 2:50 PM

TU6C-1 THz Photomixing Employing Traveling-Wave Photodetectors A. Stöhr, A. Malcoci, and D. Jager 275
TU6C-2 Microwave Vector Modulation and Arbitrary Waveform Generation using Optical Techniques A. Leven, J. Lin, J. Lee, K-Y. Tu, Y. Baeyens, and Y. Chen 279
TU6C-3 Optical Generation of Microwave Signals Based on an Unbalanced Fiber Loop Mirror C. Schaeffer and I.G. Insua 283
TU6C-4 Progress in the Opto-Electronic Oscillator – A Ten Year Anniversary Review S. Yao, L. Maleki, and D. Eliyahu 287
TU6C-5 Improving the Frequency Stability and Phase Noise of Opto-Electronic Oscillators by Harmonic Feedback T. Banky, T. Berceli, and B. Horvath 291
TU6C-6 Microwave Generation by Regenerative Mode-Locking of a Nd:YVO4/MgO:LiNbO3 Microchip Laser A. Madjar, D. Yoo, P.R. Herczfeld, W.D. Jemison, S.M. Goldwasser, and Y. Li 295

ixii
Session TU1D
Metamaterials: Left-Handed Materials and Transmission Lines

3:30pm – 5:10pm

Room 200
Chair: A. A. Oliner, Polytechnic University
Co-chair: J. Zehentner, Czech Technical University in Prague

TU1D-1 3:30 PM A Via-Free Microstrip Left-Handed Transmission Line
A. Sanada, K. Murakami, S. Aso, H. Kubo, and I. Awai

TU1D-2 3:50 PM Leaky-Waves in a Metamaterial-Based Two-Dimensional Structure for a Conical Beam Antenna
C.A. Allen, C. Caloz, and T. Itoh

TU1D-3 4:10 PM The Nature of Radiation From Leaky Waves On Single- and Double-Negative Metamaterial Grounded Slabs
P. Baccarelli, P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto

TU1D-4 4:50 PM Electronically-Controlled Metamaterial-Based Transmission Line as a Continuous-Scanning Leaky-Wave Antenna
S. Lim, C. Caloz, and T. Itoh

TU1D-5 5:10 PM Nonlinear Transmission Lines in Left-Handed Media
A. Kozyrev and D. van der Weide

Session TU3D
Directional Coupler Techniques

Room BallC
Chair: J. Owens, Boise State University
Co-chair: C. Buntschuh, Microwave Engineering Services

TU3D-1 3:30 PM Design of Fractal Rat-Race Coupler
H. Ghali and T.A. Moselhy

TU3D-2 3:50 PM A Novel Compact Multi-Layer MMIC CPW Branchline Coupler Using Thin-Film Microstrip Stub Loading at 44 GHz
K. Hettak, G.A. Morin, and M.G. Stubbs

TU3D-3 4:10 PM Miniaturized 90°Hybrid Circuit Using Quasi-Distributed TFMS Line
T. Tanaka, K. Nishikawa, and M. Aikawa

TU3D-4 4:30 PM Design of a 90 Hybrid Coupler with Harmonic Rejection Characteristic
S-Y. Lee, Y. Chung, T. Itoh, and D. Ahn

TU3D-5 4:50 PM Series-Configuration of Multi-Line Directional-Coupler Sections with Improved Coupling
H. Schmiedel
Session TU4D
Millimeter- and Submillimeter-Wave Components and Technology

Room 202CD
Chair: R. Enrick, Motorola Labs
Co-chair: J. Wiltse, Georgia Tech

A Precision Micromachining Technique for the Fabrication of Hybrid Millimeter Wave Circuits
W. Chow, A. Champion, and D. Steenson

Micromachined Millimeter-Wave Module for Power Combining
Y. Lee, J. East, and L. Katehi

Periodic Filters for Performance Enhancement of Millimeter-wave Microstrip Antenna Arrays
C. Eswarappa, R. Anderson, and F. Kolak

Millimeter-Wave Corrugated Tapered-Slot Antennas
R. Judaschke and M. Palacios

Terahertz-Emitting Devices Based on Boron-Doped Silicon

Novel Possibilities for Coherent Radiation Sources
Y.A. Hussein and J.E. Spencer

Session TU5D
Microwave Acoustic Devices

Room 201A
Chair: R. Weigel, University of Erlangen-Nuremberg
Co-chair: S. Stitzer, Northrop Grumman Electronic Systems

Bulk Acoustic Wave Filters for GPS with Extreme Stopband Attenuation
M. Handtmann, S. Marksteiner, J. Kaitila, and R. Aigner

Proposal of a New Landing Area for SAW RF Filters in Wireless Applications Ensuring Precisely Predictable Filter Characteristics
H. Bilzer, F.M. Fischl, J.E. Kiwitt, K-Ch. Wagner, and W. Menzel

New Modeling of TFBAR and On-Wafer Inductor Effects on the TFBAR Ladder Filter Performance
J-S. Kim, Y-D. Kim, M.G. Gu, and J-G. Yook

Electromagnetic Modeling of Thin-Film Bulk Acoustic Resonators
M. Farina and T. Rozzi

Voltage Controlled SAW Filters on 2DEG AlGaN/GaN Heterostructures
J. Grajzl, F. Calle, J. Pedros, and T. Palacios

Balanced Lattice-Ladder Bandpass Filter in Bulk Acoustic Wave Technology
H.K. Jan ten Dolle, J-W. Loboek, A. Tuinhout, and J. Fockema

Integration of Bulk Acoustic Wave Filters: Concepts and Trends
L. Elbrecht, R. Aigner, C-I. Lin, and H-J. Timme
Session TU6D
Numerical Modeling for RF/Microwave Photonic Applications

Room 202AB
Chair: K. Goverdhanam, Agere Systems
Co-chair: A. Gopinath, University of Minnesota

TU6D-1 Characteristics of InP HEMT Harmonic Optoelectronic Mixers and Their Application to 60GHz
3:30 PM Radio-on-Fiber Systems
C-S. Choi, H-S. Kang, D-H. Kim, K-S. Seo, and W-Y. Choi

TU6D-2 All-Optical Harmonic Frequency Up-Conversaion for a WDM Radio Over Fiber System
3:50 PM H-J. Song, J.S. Lee, and J-I. Song

TU6D-3 Global EM and Thermal analysis of a 40Gb/s all integrated optoelectronic transmitter module
4:10 PM B. Thon, D. Baillargeat, S. Verdeyme, and R. Lefevre

TU6D-4 Performance Analysis of MMOF Systems Considering Laser Phase Noise under Rician Fading
4:30 PM C. Yun, T-S. Cho, S. Sung, and K. Kim

TU6D-5 Effect of Laser and RF Oscillator Phase Noises
4:50 PM T-S. Cho, C. Yun, K. Kim, and K. Kim