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Abstract—Single-photon avalanche diode (SPAD) pixel scaling is
essential to meet the increasing demands for high-resolution,
compact, and power-efficient time-of-flight (ToF) sensing. In
particular, the 3D-stacked approach enables aggressive pixel
scaling by separating the SPAD and readout circuits into
different wafers, thus maximizing the fill factor while minimizing
the pixel pitch. However, pixel miniaturization often leads to
degraded SPAD performance due to the premature edge
breakdown (PEB) and the reduced number of photon-generated
carriers that go through the avalanche multiplication region. In
this work, we overcome these challenges by optimizing the doping
profile to enhance the carrier collection in the device. We present
a detailed analysis of the optimization progress by evaluating
breakdown voltage (V3), dark count rate (DCR), and photon
detection probability (PDP), highlighting the trade-offs and
recovery achieved through successive doping refinements. The
optimized device achieves a PDP of 37% and a timing jitter of
85 ps at 940 nm. Compared to prior 3D-stacked back-illuminated
(BI) SPADs, our work exhibits one of the smallest pixel pitches to
date, yet retains competitive PDP and jitter characteristics. This
combination of aggressive scaling and robust performance
positions the proposed SPAD as a promising solution for LiDAR,
3D imaging, and future wearable sensing systems.

Index Terms—3D imaging, 3D photonics, 3D-stacked SPAD
sensor, back-illuminated SPAD, LiDAR, photon detection
probability (PDP), pixel pitch, pixel scaling, resolution, single-
photon avalanche diode (SPAD), timing jitter.

I. INTRODUCTION

INGLE-PHOTON avalanche diodes (SPADs) have
emerged as a key enabler in a wide range of modern
photonic applications, including light detection and
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ranging (LiDAR), fluorescence lifetime imaging (FLIM),
time-of-flight (ToF) ranging, and quantum information
processing [1]-[4]. To further expand their applicability, there
is an increasing demand for higher-resolution SPAD arrays
with smaller pixel pitches. Pixel miniaturization not only
improves the spatial resolution in depth sensing but also
allows more pixels to be integrated into constrained chip
areas—an essential feature in both automotive and
mobile/wearable applications. Fig. | illustrates the impact of
pixel scaling in two scenarios. As shown in Fig. 1(a), smaller
pixel pitches lead to more accurate shape recognition across a
wide range of distances—an essential feature for automotive
LiDAR systems, where distinguishing surrounding objects is
directly linked to safety. Even with large pixels, SPAD arrays
can reconstruct nearby objects, but smaller pixel pitches
enable more detailed shapes—especially at longer distances,
where they preserve recognizable forms critical for object
classification and navigation in autonomous systems [5]. In
mobile applications such as AR/VR headsets, smartphones,
and wearable sensors, where size and power constraints are
stringent, pixel scaling enables substantial advantages in
integration density [6]. Fig. 1(b) shows that reducing the pixel
pitch from 10 um to 1 um increases the pixels from 100 to
10,000 within a fixed 100 x 100 pm? area. This scaling
enhances depth resolution in compact 3D sensors without
enlarging the sensor. Fig. 1(c) further shows that, for a fixed
pixel count (e.g., 10 x 10), pixel miniaturization dramatically
reduces the required area—down to 100 um? at 1 pm pitch—
making integration feasible in space-constrained modules such
as AR and wearable devices.

Despite these benefits, scaling SPAD pixels presents
several challenges in conventional front-illuminated (FI) and
even back-illuminated (BI) CMOS processes. FI SPADs,
while structurally simple and fully CMOS-compatible, suffer
from limited photon detection probability (PDP), particularly
in the near-infrared (NIR) wavelengths commonly used in
LiDAR systems [7]. This is primarily due to optical blockage
by front-side metal layers and shallow absorption depth at
longer wavelengths, which restricts effective photon
absorption. Moreover, both the SPAD and its readout circuitry
must share the same silicon plane, which limits fill factor and
constrains pixel pitch scaling due to routing complexity and
area overhead. To overcome these limitations, BI SPADs
relocate the photon entry point to the back-side of the wafer,
thereby avoiding metal-induced shading and improving PDP
[8]. However, despite these optical advantages, BI
architectures still retain a critical bottleneck: the SPAD and its
associated circuits must coexist within the same layer, limiting
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Fig. 1. Impact of SPAD pixel pitches on spatial resolution and integration density for LIDAR and mobile/wearable applications.

how tightly pixels can be packed. These architectural
transitions and their impact on pixel scaling are illustrated in
Fig. 2, which summarizes the evolution of SPAD pixel pitch
over the past decade [9]-[38]. Early FI SPADs, prevalent
before 2018, maintained relatively large pixel sizes above
15 um. The adoption of BI structures subsequently enabled
further scaling down to ~10 pm. However, as shown in the
orange-shaded region, most of the recent progress—
particularly pitches below 5 um—has been achieved through
the 3D-stacked approach, which decouples the SPAD and
readout layers. To leverage this architectural trend, 3D-stacked
SPADs have emerged as a promising approach. By vertically
separating the SPAD from the readout circuit and connecting
them through hybrid bonding, 3D integration enables more
aggressive pitch scaling while retaining full per-pixel
functionality. It also facilitates the use of optimized doping
profiles and layer thicknesses in each tier, decoupling the

conflicting design requirements between detection and readout.

While 3D-stacked architectures offer a clear path toward

aggressive pixel miniaturization, fundamental structural
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Fig. 2. Pixel-pitch evolution of SPADs over the past decade.

constraints of SPADs still impose significant challenges. Key
elements of the SPAD structure—such as the p-n junction,
guard ring (GR), and bias ring (BR)—are essential for
operating the SPAD, yet they occupy a minimum area that
becomes increasingly difficult to accommodate as the pixel-
pitch shrinks. As a result, further miniaturization can
compromise the SPAD's performance, most notably by
reducing the photon detection probability (PDP). This
degradation is primarily attributed to a smaller carrier
collection volume and non-uniform avalanche multiplication
near the edge of the p-n junction. However, the flexibility
offered by the 3D stacking enables independent optimization
of the top-tier SPAD layers. In particular, the doping profile of
the SPAD can be finely tuned to mitigate PDP degradation
while maintaining compact pixel dimensions. Preliminary
results on doping-profile optimization were presented in
Ref.[39]. In this paper, we provide comprehensive
measurement results and detailed analysis of the doping
optimization process integrated into a 3D-stacked SPAD
platform. The remainder of this paper is organized as follows.
SectionII outlines the impact of pixel miniaturization on
SPAD performance, particularly the degradation in PDP.
Section III presents the optimization of the doping profile to
restore PDP while maintaining compact dimensions.
Section IV provides comprehensive electrical and optical
characterization results of the optimized device. Section V
benchmarks the proposed SPAD against state-of-the-art
SPADs and concludes the paper.

II. PIXEL SHRINKING IN 3D-BI CIS TECHNOLOGY

To enable ultra-high-density SPAD arrays, we explored
aggressive pixel miniaturization using a 40 nm 3D-stacked BI
CIS process. This advanced technology provides favorable
design margins—such as tighter metal routing, finer
lithography, and deeper well structures—that facilitate
aggressive scaling while preserving SPAD functionality. Fig. 3
compares the previously reported SPAD from Ref. [33] and
the newly scaled version in this study. The pixel pitch is
reduced from 8to 3.5pum by employing cathode sharing
between adjacent SPADs. While the reference SPAD adopts a
conventional BI technology, this work leverages a 3D-stacked
BI technology to enable tighter vertical integration. In
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Fig. 3. Comparison of SPADs with pitches of 8 and 3.5 um.
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Fig. 4. Comparison of SPAD array scaling with different
pixel pitches.

conjunction with this, the total silicon thickness is increased
from 4to 7 um to secure sufficient structural depth. The p-n
junction diameter is also reduced from 2.5to 1um to
accommodate the smaller pixel footprint. Both designs employ
a pt+/deep n-well (DNW) junction for avalanche multiplication,
a p-well (PW) GR to suppress premature edge breakdown
(PEB), and a BR to supply the operation voltage to the SPAD.
To quantify the benefit of pixel miniaturization, Fig.4
compares the required SPAD array area to implement a
1 Megapixel array using two different pixel pitches. The 8 pm
pitch requires 64 mm? of area, whereas the scaled 3.5 pum
design only occupies 12.25 mm?. This 5.2% reduction in area
directly translates to improved integration density and enables
SPAD array implementation in compact form factors, such as
mobile and wearable devices. These results highlight the
critical importance of pixel scaling for realizing high-
resolution SPAD imagers in practical applications. However,
this miniaturization also introduces several drawbacks, as
highlighted in Fig. 5. First, reducing the active area diameter
from 2.5to | pm increases the curvature at the junction
periphery, elevating the risk of PEB and degrading breakdown
uniformity, which in turn reduces the PDP. Second, the
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Fig. 5. Challenges in pixel scaling and mitigation via thicker
epitaxial silicon.
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smaller active volume inherently limits the number of
photogenerated carriers that can be efficiently collected,
further diminishing sensitivity.

Fig. 6 presents the measured PDP of both SPADs at an
excess bias voltage (V&) of 2.5 V. The scaled device exhibits
lower PDP across the entire wavelength range. The cut-on
wavelength shifts from 430 to 530 nm as the avalanche region
is positioned deeper in the scaled device, causing short-
wavelength carriers to recombine near the surface before
multiplication. Most notably, the PDP at 940 nm drops from
45t0 20.5%, clearly indicating a significant loss of NIR
sensitivity. These findings demonstrate that while pixel
miniaturization enhances integration density, it inevitably
compromises photon detection performance. To address these
challenges, precise control of the doping profiles and junction
depth becomes essential. An optimized collection volume
improves overall detection efficiency by facilitating more
effective carrier collection. Therefore, further doping
optimizations are required to recover high efficiency.
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Fig. 7. Doping-optimization strategy with three tuning
schemes and corresponding peak electric-field positions.

III. DEVICE OPTIMIZATION PROGRESS

To overcome the degradation in PDP caused by aggressive
pixel miniaturization, we implemented a systematic doping
optimization strategy aimed at restoring collection efficiency
and electric-field control. The approach involved adjusting the
DNW and GR doping to enhance both carrier-collection and
avalanche-triggering performance. We developed three tuning
schemes—Tune #1, #2, and #3—each targeting a specific
improvement, as summarized in Fig. 7. Tune #1 expands the
DNW region by controlling the implanted dose, effectively
increasing the n-type collection volume around the
multiplication region (MR), which serves as the carrier-
collection region. Tune #2 further enlarges the n-type volume
by adjusting the dose and energy of DNW, extending the
carrier-collection region vertically and laterally to improve
detection efficiency. Tune #3 incorporates an optimized PW
design in addition to Tune #2. This combined configuration
not only maintains a large collection volume but also promotes
a more efficient -electric-field distribution, improving
breakdown stability and overall SPAD performance. As
shown in Fig. 7, the peak electric-field position gradually
shifts upward with each tuning step, reflecting the deeper and
more controlled field shaping. This evolution illustrates the
critical role of DNW and GR engineering in recovering SPAD
performance lost during pixel scaling.

To validate the effectiveness of our structural tuning, we
measured the electrical and optical characteristics of all four
SPAD variants. As shown in Fig. §(a), the current—voltage (I-
V) characteristics under both dark and illuminated conditions
demonstrate  stable avalanche behavior across all
configurations. Fig. 8(b) summarizes the breakdown voltage
(VB) for each design. The V3 increases progressively from
23.2V in the base structure to 26.2V in Tune #3, which is
attributed to the gradual extension of the depletion region and
reshaping of the electric field caused by the DNW and GR
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Fig. 8. Impact of doping optimization on SPAD electrical
characteristics: (a) I-V curves under dark and illuminated
conditions for each tuning step. (b) ¥z and (c) saturation-
current comparisons.

optimizations. The observed reduction in saturation current
reflects the increased series resistance from anode to cathode,
mainly resulting from the deeper and wider DNW. Fig.9
presents the dark count rate (DCR) measured at room
temperature across V' ranging from 0.5 to 2.5V in 0.5 V steps.
The comparison includes the base structure and three tuning
variants (Tune #1-#3). The base device exhibits the lowest
DCR of approximately 0.7kcps at Ve = 2.5V, whereas
Tune #1 and Tune#2 show a moderate increase to around
1.9 keps. Tune #3 exhibits the DCR of 2.7 keps. The gradual
increase in DCR across the tuning steps is attributed not to an
increase in defect density but rather to the deliberate
expansion of the carrier collection region and the enhancement
of electric-field uniformity at the MR through DNW and GR
engineering. Thus, the increase in DCR is a trade-off that
accompanies the improved detection capability rather than a
degradation of device quality. It is also important to note that
for most outdoor applications, the DCR contribution becomes
negligible compared to the dominant effect of ambient light.
Therefore, the observed DCR values remain sufficiently low
and acceptable for practical SPAD implementations. Fig. 10
presents the PDP characteristics of the Base and Tune #1-#3
structures measured at 940 nm. The Ve was swept from 1 to
2.5V in 0.5V increments. As doping and field-shaping
optimizations progress from Base to Tune#3, PDP values
improve consistently across all bias points. Notably, at Ve =
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2.5V, the PDP improved from 20.5% (Base) to 28%
(Tune #1), 31.8% (Tune#2), and ultimately 37% (Tune #3).
Even at Ve = 1V, the Tune#3 device achieved a PDP of
18.5%, which is comparable to that of the Base device at 2 'V,
indicating superior carrier collection and triggering efficiency
under lower electric fields. These results validate that the
electric-field optimization not only enhances triggering
probability but also enables lower-voltage operation while
maintaining high sensitivity. Fig. 11 shows the wavelength-
dependent PDP response of the Base and Tune #3 SPADs at
Ve = 2.5V and room temperature. Across the visible to near-
infrared spectrum (400-950 nm), the Tune#3 device exhibits
both higher peak performance and a broader spectral response.
The peak PDP improved from 40% to 59% at 825 nm. At
940 nm, which is a key wavelength for many practical
applications, PDP increased from 20.5% (Base) to 37%
(Tune #3). Additionally, the cut-on wavelength—defined as
the onset of significant PDP rise—shifted from 530 nm (Base)
to 450 nm (Tune #3), suggesting improved blue-side response
due to reduced absorption losses around the back-side surface.
These enhancements are attributed to the optimized electric-
field profile and doping gradient, which improve carrier-
collection efficiency across a wider absorption depth range
and avalanche-triggering probability.

The results in this section demonstrate that careful
engineering of doping profiles—particularly expansion of the
DNW and optimization of the GR—can effectively restore
photon-detection performance degraded by pixel scaling. The
final configuration (Tune #3) successfully recovers PDP to 37%
at 940 nm, nearly doubling the efficiency of the base device.
These findings highlight the viability of scaling SPAD pixels
down to 3.5 um without significant compromise in sensitivity,
provided that the device architecture is co-optimized with
doping and design strategies.

IV. FULL CHARACTERIZATION OF THE OPTIMIZED SPAD

To assess the practical applicability of the proposed
SPAD, we conducted comprehensive electrical and optical
characterizations using the optimized structure, referred to as
Tune #3. Key metrics such as temperature-dependent Vs and
DCR, light-emission test (LET), timing jitter, and afterpulsing
probability were measured.

We investigated the thermal robustness of the optimized
SPAD by measuring the Vp over a temperature range from —
30to 30 °C in 5 °C increments. As shown in Fig. 12(a), the Vs
exhibits a consistent and linear increase of approximately
0.1V per 5°C. Such linearity ensures predictable biasing
behavior across a wide operating temperature window, which
is particularly important for applications requiring stable gain
and timing performance in outdoor or thermally dynamic
environments. These results confirm that the optimized SPAD
maintains excellent thermal stability, with no abrupt shifts or
anomalies in Vs, thereby simplifying system-level bias control
strategies. To evaluate thermal robustness and understand the
temperature-induced behavior of the optimized SPAD, DCR
was also measured from —30 to +30 °C in steps of 5 °C using a
temperature-controlled environment chamber, and the results
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are depicted in Fig. 12(b). DCR increases exponentially with
temperature, consistent with thermally-generated carriers
becoming more dominant at higher temperatures. To analyze
this further, Arrhenius plots of DCR are presented in
Fig. 12(c) for three Ve conditions. The extracted slopes
correspond to an activation energy (E.) of approximately
0.48¢eV, indicating that Shockley—Read—Hall (SRH)
generation dominates the thermal contribution to DCR in this
structure.

To visualize the avalanche multiplication region of the
optimized SPAD, LET measurements were performed by
increasing the Ve from 0.5 to 2.5V. As Ve increases, light
emission appears and strengthens, remaining well-centered
within the SPAD active area. The results indicate a well-
confined avalanche multiplication region and confirm that the
optimized GR design effectively suppresses PEB.

To evaluate the temporal resolution of the optimized
SPAD, timing jitter was measured at Ve = 2.5V using a ps
pulsed laser diode with a wavelength of 940nm. The
measurement setup captured the time distribution of the first

photon-triggered avalanche events. As shown in Fig. 14, the
resulting timing jitter exhibits a full width at half maximum
(FWHM) of approximately 85 ps. This result highlights the
device’s fast temporal response and suitability for time-
resolved applications such as LiDAR and FLIM.

To evaluate the afterpulsing probability (APP) with
minimal distortion, it is essential to reduce the dead time
following an avalanche event. We employ an analogue front-
end (AFE) circuit shown in the bottom-tier schematic
(Fig. 15(a)) to minimize dead time and allow accurate time-
domain analysis. All transistors are 1.1 V low-voltage (LV)
devices, and a Vc-controlled cascode transistor is
implemented to expand the circuit's accommodatable Ve
range, which is approximately doubled. To suppress the
afterpulse effect, an active quenching technique employing a
positive feedback loop is implemented, which rapidly senses
the avalanche current to turn off the quenching load transistor,
thereby significantly increasing the load resistance.
Concurrently, it enhances the active quenching effect by
quickly injecting charges into the SPAD anode. This approach
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Fig. 15. (a) SPAD (top-tier) and AFE (bottom-tier) schematic. (b) Output pulses and (c) inter-avalanche histograms with the

AFE and external quenching resistor.

is also effective in mitigating the degradation of quenching
speed caused by RC delay, which arises from the increased
parasitic capacitance between the SPAD's output node and the
front-end circuit's input in 3D-stacked Cu-to-Cu bonding. This
front-end circuit also incorporates an active recharge function
using a negative feedback loop to minimize the dead time for
precise APP measurements. This feature facilitates a rapid
reset by quickly removing residual charge in the SPAD after
an adjustable delay. As illustrated in Fig. 15(b), the output
pulse generated with an external quenching resistor (Ro)
exhibits a relatively long tail (~2 ps dead time), primarily due
to parasitic capacitance and setup-related factors. In contrast,
using the integrated AFE enables a significantly shorter dead
time down to ~20 ns, ensuring more precise measurement of
the afterpulse distribution. Fig. 15(c) compares the
afterpulsing histograms under both quenching configurations,
and by integrating the front-end circuit, we could characterize
the APP at much shorter dead times, which is difficult to
achieve with discrete device measurements. The results
confirm that the afterpulse effect is negligible even at the short
dead time, demonstrating that the device is successfully
optimized, implying a low concentration of trapping defects.

V. COMPARISONS AND CONCLUSION

To evaluate the performance of the optimized SPAD, we
benchmark key metrics—pixel pitch, dark count rate (DCR),
photon detection probability (PDP), and timing jitter—against
prior state-of-the-art SPADs fabricated in 3D-BI structures. As
shown in Fig. 16(a), our device achieves a PDP of 37 % at
940 nm, which outperforms all previous works in the sub-5 pm
pixel pitch regime. Notably, while Ref.[33]—prior 8 pum
SPAD—reports the highest PDP of 45 %, it is achieved with a
significantly larger pixel size. In this work, we aggressively
reduce the pixel pitch by more than half to 3.5 um, and yet
successfully recover a substantial portion of the degraded PDP
through doping profile optimization, achieving performance
that exceeds many 6 pm and 5 um devices. In Fig. 16(b), the
timing jitter of our SPAD is measured as 85 ps at 940 nm,
which represents the lowest value among all surveyed 3D-BI
SPADs regardless of pitch. Even compared to 8 pm devices

(@) s0 ‘
— This Work
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S ™ . [23]
S 30
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Fig. 16. Comparison with state-of-the-art 3D-stacked BI
SPADs at 940 nm: (a) PDP and (b) timing jitter versus pixel
pitch.

with 89 ps jitter [33], the proposed SPAD demonstrates
enhanced timing resolution with 3.5 um pixel integration,
enabled by minimized carrier transit paths and optimized
avalanche triggering. As summarized in Table I, our SPAD is
fabricated using an advanced 40 nm node, and through careful
optimization, we achieve one of the smallest pixel pitches to
date among 3D-BI SPADs, while preserving excellent
performance.
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In this work, we demonstrate a 3.5 pm-pitch 3D-stacked
BI SPAD fabricated in a 40 nm CIS process, achieving a PDP
of 37% and a timing jitter of 85ps at 940 nm. This
performance represents a significant advancement over prior
SPADs with similar or larger pitches, particularly considering
the aggressive scaling from our previous 8 pm-pitch device.
While pixel miniaturization typically compromises device
efficiency and timing precision, our miniaturized SPAD
successfully recovers performance through vertical-layer
engineering and doping-profile optimization. In particular, we
highlight that this work demonstrates one of the smallest pixel
pitches among reported 3D-BI SPADs without sacrificing
device performance. The combination of high PDP, low jitter,
and small pitch makes this SPAD a promising candidate for
compact depth-sensing systems such as LiDAR and 3D
imaging in mobile and wearable applications.

TABLEI
PERFORMANCE COMPARISON OF STATE-OF-THE-ART
3D-STACKED BI SPADs

This [22] [23] [28] [30] [33] [36]
Work IEDM21 IEDM21 IEDM22 VLSI'23 JSTQE'24 IEDM 24

Parameter

Technology 40 20 90 9 90 40 <)
Inm] (3D-Bl) (3D-Bl) (3D-Bl) (3D-Bl) (3D-Bl) (3D-Bl) (3D-BI)

Pixel Pitch

oy 35 6.39 6 25 6 8 5
ValV] 26.2 30 22 18 2 233 212
Ve V] 2.5 25 3 3 3 55 3
[CESC,EX] 2722 1.8 19 173 2219 278 5
@goztrfn w 44T 28Y 32 - 43¢ 58 36"

PDP
@940 nm [%] 37 24.4Y 20.2Y 21.8" 33.2Y 45 28.6"
Timing Jitter
@ 940 nm 85 100 137 214 201 89 168
[ps]

9Measured @60°C, Pcps/um?, YPDE w/ Micro-Lens
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