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Abstract—Single-photon avalanche diode (SPAD) pixel scaling is 
essential to meet the increasing demands for high-resolution, 
compact, and power-efficient time-of-flight (ToF) sensing. In 
particular, the 3D-stacked approach enables aggressive pixel 
scaling by separating the SPAD and readout circuits into 
different wafers, thus maximizing the fill factor while minimizing 
the pixel pitch. However, pixel miniaturization often leads to 
degraded SPAD performance due to the premature edge 
breakdown (PEB) and the reduced number of photon-generated 
carriers that go through the avalanche multiplication region. In 
this work, we overcome these challenges by optimizing the doping 
profile to enhance the carrier collection in the device. We present 
a detailed analysis of the optimization progress by evaluating 
breakdown voltage (VB), dark count rate (DCR), and photon 
detection probability (PDP), highlighting the trade-offs and 
recovery achieved through successive doping refinements. The 
optimized device achieves a PDP of 37% and a timing jitter of 
85 ps at 940 nm. Compared to prior 3D-stacked back-illuminated 
(BI) SPADs, our work exhibits one of the smallest pixel pitches to 
date, yet retains competitive PDP and jitter characteristics. This 
combination of aggressive scaling and robust performance 
positions the proposed SPAD as a promising solution for LiDAR, 
3D imaging, and future wearable sensing systems. 
 
Index Terms—3D imaging, 3D photonics, 3D-stacked SPAD 
sensor, back-illuminated SPAD, LiDAR, photon detection 
probability (PDP), pixel pitch, pixel scaling, resolution, single-
photon avalanche diode (SPAD), timing jitter. 

I. INTRODUCTION 
INGLE-PHOTON avalanche diodes (SPADs) have 
emerged as a key enabler in a wide range of modern 
photonic applications, including light detection and  
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ranging (LiDAR), fluorescence lifetime imaging (FLIM), 
time-of-flight (ToF) ranging, and quantum information 
processing [1]–[4]. To further expand their applicability, there 
is an increasing demand for higher-resolution SPAD arrays 
with smaller pixel pitches. Pixel miniaturization not only 
improves the spatial resolution in depth sensing but also 
allows more pixels to be integrated into constrained chip 
areas—an essential feature in both automotive and 
mobile/wearable applications. Fig. 1 illustrates the impact of 
pixel scaling in two scenarios. As shown in Fig. 1(a), smaller 
pixel pitches lead to more accurate shape recognition across a 
wide range of distances—an essential feature for automotive 
LiDAR systems, where distinguishing surrounding objects is 
directly linked to safety. Even with large pixels, SPAD arrays 
can reconstruct nearby objects, but smaller pixel pitches 
enable more detailed shapes—especially at longer distances, 
where they preserve recognizable forms critical for object 
classification and navigation in autonomous systems [5]. In 
mobile applications such as AR/VR headsets, smartphones, 
and wearable sensors, where size and power constraints are 
stringent, pixel scaling enables substantial advantages in 
integration density [6]. Fig. 1(b) shows that reducing the pixel 
pitch from 10 μm to 1 μm increases the pixels from 100 to 
10,000 within a fixed 100 × 100 μm² area. This scaling 
enhances depth resolution in compact 3D sensors without 
enlarging the sensor. Fig. 1(c) further shows that, for a fixed 
pixel count (e.g., 10 × 10), pixel miniaturization dramatically 
reduces the required area—down to 100 μm² at 1 μm pitch—
making integration feasible in space-constrained modules such 
as AR and wearable devices. 

Despite these benefits, scaling SPAD pixels presents 
several challenges in conventional front-illuminated (FI) and 
even back-illuminated (BI) CMOS processes. FI SPADs, 
while structurally simple and fully CMOS-compatible, suffer 
from limited photon detection probability (PDP), particularly 
in the near-infrared (NIR) wavelengths commonly used in 
LiDAR systems [7]. This is primarily due to optical blockage 
by front-side metal layers and shallow absorption depth at 
longer wavelengths, which restricts effective photon 
absorption. Moreover, both the SPAD and its readout circuitry 
must share the same silicon plane, which limits fill factor and 
constrains pixel pitch scaling due to routing complexity and 
area overhead. To overcome these limitations, BI SPADs 
relocate the photon entry point to the back-side of the wafer, 
thereby avoiding metal-induced shading and improving PDP 
[8]. However, despite these optical advantages, BI 
architectures still retain a critical bottleneck: the SPAD and its 
associated circuits must coexist within the same layer, limiting 
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how tightly pixels can be packed. These architectural 
transitions and their impact on pixel scaling are illustrated in 
Fig. 2, which summarizes the evolution of SPAD pixel pitch 
over the past decade [9]–[38]. Early FI SPADs, prevalent 
before 2018, maintained relatively large pixel sizes above 
15 μm. The adoption of BI structures subsequently enabled 
further scaling down to ~10 μm. However, as shown in the 
orange-shaded region, most of the recent progress—
particularly pitches below 5 μm—has been achieved through 
the 3D-stacked approach, which decouples the SPAD and 
readout layers. To leverage this architectural trend, 3D-stacked 
SPADs have emerged as a promising approach. By vertically 
separating the SPAD from the readout circuit and connecting 
them through hybrid bonding, 3D integration enables more 
aggressive pitch scaling while retaining full per-pixel 
functionality. It also facilitates the use of optimized doping 
profiles and layer thicknesses in each tier, decoupling the 
conflicting design requirements between detection and readout. 

While 3D-stacked architectures offer a clear path toward 
aggressive pixel miniaturization, fundamental structural 

constraints of SPADs still impose significant challenges. Key 
elements of the SPAD structure—such as the p-n junction, 
guard ring (GR), and bias ring (BR)—are essential for 
operating the SPAD, yet they occupy a minimum area that 
becomes increasingly difficult to accommodate as the pixel-
pitch shrinks. As a result, further miniaturization can 
compromise the SPAD's performance, most notably by 
reducing the photon detection probability (PDP). This 
degradation is primarily attributed to a smaller carrier 
collection volume and non-uniform avalanche multiplication 
near the edge of the p-n junction. However, the flexibility 
offered by the 3D stacking enables independent optimization 
of the top-tier SPAD layers. In particular, the doping profile of 
the SPAD can be finely tuned to mitigate PDP degradation 
while maintaining compact pixel dimensions. Preliminary 
results on doping-profile optimization were presented in 
Ref. [39]. In this paper, we provide comprehensive 
measurement results and detailed analysis of the doping 
optimization process integrated into a 3D-stacked SPAD 
platform. The remainder of this paper is organized as follows. 
Section II outlines the impact of pixel miniaturization on 
SPAD performance, particularly the degradation in PDP. 
Section III presents the optimization of the doping profile to 
restore PDP while maintaining compact dimensions. 
Section IV provides comprehensive electrical and optical 
characterization results of the optimized device. Section V 
benchmarks the proposed SPAD against state-of-the-art 
SPADs and concludes the paper. 

II. PIXEL SHRINKING IN 3D-BI CIS TECHNOLOGY  
To enable ultra-high-density SPAD arrays, we explored 

aggressive pixel miniaturization using a 40 nm 3D-stacked BI 
CIS process. This advanced technology provides favorable 
design margins—such as tighter metal routing, finer 
lithography, and deeper well structures—that facilitate 
aggressive scaling while preserving SPAD functionality. Fig. 3 
compares the previously reported SPAD from Ref. [33] and 
the newly scaled version in this study. The pixel pitch is 
reduced from 8 to 3.5 μm by employing cathode sharing 
between adjacent SPADs. While the reference SPAD adopts a 
conventional BI technology, this work leverages a 3D-stacked 
BI technology to enable tighter vertical integration. In 

 
 

Fig. 1. Impact of SPAD pixel pitches on spatial resolution and integration density for LiDAR and mobile/wearable applications. 
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Fig. 2. Pixel-pitch evolution of SPADs over the past decade. 
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conjunction with this, the total silicon thickness is increased 
from 4 to 7 μm to secure sufficient structural depth. The p-n 
junction diameter is also reduced from 2.5 to 1 μm to 
accommodate the smaller pixel footprint. Both designs employ 
a p+/deep n-well (DNW) junction for avalanche multiplication, 
a p-well (PW) GR to suppress premature edge breakdown 
(PEB), and a BR to supply the operation voltage to the SPAD. 
To quantify the benefit of pixel miniaturization, Fig. 4 
compares the required SPAD array area to implement a 
1 Megapixel array using two different pixel pitches. The 8 μm 
pitch requires 64 mm² of area, whereas the scaled 3.5 μm 
design only occupies 12.25 mm². This 5.2× reduction in area 
directly translates to improved integration density and enables 
SPAD array implementation in compact form factors, such as 
mobile and wearable devices. These results highlight the 
critical importance of pixel scaling for realizing high-
resolution SPAD imagers in practical applications. However, 
this miniaturization also introduces several drawbacks, as 
highlighted in Fig. 5. First, reducing the active area diameter 
from 2.5 to 1 μm increases the curvature at the junction 
periphery, elevating the risk of PEB and degrading breakdown 
uniformity, which in turn reduces the PDP. Second, the 

smaller active volume inherently limits the number of 
photogenerated carriers that can be efficiently collected, 
further diminishing sensitivity. 

Fig. 6 presents the measured PDP of both SPADs at an 
excess bias voltage (VE) of 2.5 V. The scaled device exhibits 
lower PDP across the entire wavelength range. The cut-on 
wavelength shifts from 430 to 530 nm as the avalanche region 
is positioned deeper in the scaled device, causing short-
wavelength carriers to recombine near the surface before 
multiplication. Most notably, the PDP at 940 nm drops from 
45 to 20.5 %, clearly indicating a significant loss of NIR 
sensitivity. These findings demonstrate that while pixel 
miniaturization enhances integration density, it inevitably 
compromises photon detection performance. To address these 
challenges, precise control of the doping profiles and junction 
depth becomes essential. An optimized collection volume 
improves overall detection efficiency by facilitating more 
effective carrier collection. Therefore, further doping 
optimizations are required to recover high efficiency.  

 
Fig. 3. Comparison of SPADs with pitches of 8 and 3.5 μm. 
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Fig. 4. Comparison of SPAD array scaling with different 
pixel pitches. 
 
 

0 10 20 30 40 50 60 70 80
SPAD Array Area [mm2]

N
um

be
r o

f S
PA

D
s

0

0.2

0.4

0.6

0.8

1.0

(x106)

Required Area @ 1Mpixel

12.25 mm2

8 μm

64 mm2

3.5 μm

3.5 μm Pitch
8 μm Pitch

 
Fig. 5. Challenges in pixel scaling and mitigation via thicker 
epitaxial silicon. 
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Fig. 6. Measured PDP spectra of 8 μm pitch and proposed 
3.5 μm SPADs. 
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III. DEVICE OPTIMIZATION PROGRESS  
To overcome the degradation in PDP caused by aggressive 

pixel miniaturization, we implemented a systematic doping 
optimization strategy aimed at restoring collection efficiency 
and electric-field control. The approach involved adjusting the 
DNW and GR doping to enhance both carrier-collection and 
avalanche-triggering performance. We developed three tuning 
schemes—Tune #1, #2, and #3—each targeting a specific 
improvement, as summarized in Fig. 7. Tune #1 expands the 
DNW region by controlling the implanted dose, effectively 
increasing the n-type collection volume around the 
multiplication region (MR), which serves as the carrier-
collection region. Tune #2 further enlarges the n-type volume 
by adjusting the dose and energy of DNW, extending the 
carrier-collection region vertically and laterally to improve 
detection efficiency. Tune #3 incorporates an optimized PW 
design in addition to Tune #2. This combined configuration 
not only maintains a large collection volume but also promotes 
a more efficient electric-field distribution, improving 
breakdown stability and overall SPAD performance. As 
shown in Fig. 7, the peak electric-field position gradually 
shifts upward with each tuning step, reflecting the deeper and 
more controlled field shaping. This evolution illustrates the 
critical role of DNW and GR engineering in recovering SPAD 
performance lost during pixel scaling. 

To validate the effectiveness of our structural tuning, we 
measured the electrical and optical characteristics of all four 
SPAD variants. As shown in Fig. 8(a), the current–voltage (I–
V) characteristics under both dark and illuminated conditions 
demonstrate stable avalanche behavior across all 
configurations. Fig. 8(b) summarizes the breakdown voltage 
(VB) for each design. The VB increases progressively from 
23.2 V in the base structure to 26.2 V in Tune #3, which is 
attributed to the gradual extension of the depletion region and 
reshaping of the electric field caused by the DNW and GR 

optimizations. The observed reduction in saturation current 
reflects the increased series resistance from anode to cathode, 
mainly resulting from the deeper and wider DNW. Fig. 9 
presents the dark count rate (DCR) measured at room 
temperature across VE ranging from 0.5 to 2.5 V in 0.5 V steps. 
The comparison includes the base structure and three tuning 
variants (Tune #1–#3). The base device exhibits the lowest 
DCR of approximately 0.7 kcps at VE = 2.5 V, whereas 
Tune #1 and Tune #2 show a moderate increase to around 
1.9 kcps. Tune #3 exhibits the DCR of 2.7 kcps. The gradual 
increase in DCR across the tuning steps is attributed not to an 
increase in defect density but rather to the deliberate 
expansion of the carrier collection region and the enhancement 
of electric-field uniformity at the MR through DNW and GR 
engineering. Thus, the increase in DCR is a trade-off that 
accompanies the improved detection capability rather than a 
degradation of device quality. It is also important to note that 
for most outdoor applications, the DCR contribution becomes 
negligible compared to the dominant effect of ambient light. 
Therefore, the observed DCR values remain sufficiently low 
and acceptable for practical SPAD implementations. Fig. 10 
presents the PDP characteristics of the Base and Tune #1–#3 
structures measured at 940 nm. The VE was swept from 1 to 
2.5 V in 0.5 V increments. As doping and field-shaping 
optimizations progress from Base to Tune #3, PDP values 
improve consistently across all bias points. Notably, at VE = 

 
Fig. 7. Doping-optimization strategy with three tuning 
schemes and corresponding peak electric-field positions. 
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Fig. 8. Impact of doping optimization on SPAD electrical 
characteristics: (a) I–V curves under dark and illuminated 
conditions for each tuning step. (b) VB and (c) saturation-
current comparisons. 
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2.5 V, the PDP improved from 20.5% (Base) to 28% 
(Tune #1), 31.8% (Tune #2), and ultimately 37% (Tune #3). 
Even at VE = 1 V, the Tune #3 device achieved a PDP of 
18.5%, which is comparable to that of the Base device at 2 V, 
indicating superior carrier collection and triggering efficiency 
under lower electric fields. These results validate that the 
electric-field optimization not only enhances triggering 
probability but also enables lower-voltage operation while 
maintaining high sensitivity. Fig. 11 shows the wavelength-
dependent PDP response of the Base and Tune #3 SPADs at 
VE = 2.5 V and room temperature. Across the visible to near-
infrared spectrum (400–950 nm), the Tune #3 device exhibits 
both higher peak performance and a broader spectral response. 
The peak PDP improved from 40% to 59% at 825 nm. At 
940 nm, which is a key wavelength for many practical 
applications, PDP increased from 20.5% (Base) to 37% 
(Tune #3). Additionally, the cut-on wavelength—defined as 
the onset of significant PDP rise—shifted from 530 nm (Base) 
to 450 nm (Tune #3), suggesting improved blue-side response 
due to reduced absorption losses around the back-side surface. 
These enhancements are attributed to the optimized electric-
field profile and doping gradient, which improve carrier-
collection efficiency across a wider absorption depth range 
and avalanche-triggering probability. 

The results in this section demonstrate that careful 
engineering of doping profiles—particularly expansion of the 
DNW and optimization of the GR—can effectively restore 
photon-detection performance degraded by pixel scaling. The 
final configuration (Tune #3) successfully recovers PDP to 37% 
at 940 nm, nearly doubling the efficiency of the base device. 
These findings highlight the viability of scaling SPAD pixels 
down to 3.5 μm without significant compromise in sensitivity, 
provided that the device architecture is co-optimized with 
doping and design strategies. 

IV. FULL CHARACTERIZATION OF THE OPTIMIZED SPAD 
To assess the practical applicability of the proposed 

SPAD, we conducted comprehensive electrical and optical 
characterizations using the optimized structure, referred to as 
Tune #3. Key metrics such as temperature-dependent VB and 
DCR, light-emission test (LET), timing jitter, and afterpulsing 
probability were measured. 

We investigated the thermal robustness of the optimized 
SPAD by measuring the VB over a temperature range from –
30 to 30 °C in 5 °C increments. As shown in Fig. 12(a), the VB 
exhibits a consistent and linear increase of approximately 
0.1 V per 5 °C. Such linearity ensures predictable biasing 
behavior across a wide operating temperature window, which 
is particularly important for applications requiring stable gain 
and timing performance in outdoor or thermally dynamic 
environments. These results confirm that the optimized SPAD 
maintains excellent thermal stability, with no abrupt shifts or 
anomalies in VB, thereby simplifying system-level bias control 
strategies. To evaluate thermal robustness and understand the 
temperature-induced behavior of the optimized SPAD, DCR 
was also measured from –30 to +30 °C in steps of 5 °C using a 
temperature-controlled environment chamber, and the results 

 
Fig. 9. DCR comparison across doping tuning conditions as a 
function of VE. 
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Fig. 10. Measured PDP at 940 nm under various VE for each 
doping-tuning condition. 
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Fig. 11. Measured PDP at 940 nm under various VE for each 
doping-tuning condition. 
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Fig. 12. Temperature dependence of the optimized SPAD: (a) VB, (b) DCR, and (c) Arrhenius analysis under different VE. 
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are depicted in Fig. 12(b). DCR increases exponentially with 
temperature, consistent with thermally-generated carriers 
becoming more dominant at higher temperatures. To analyze 
this further, Arrhenius plots of DCR are presented in 
Fig. 12(c) for three VE conditions. The extracted slopes 
correspond to an activation energy (Ea) of approximately 
0.48 eV, indicating that Shockley–Read–Hall (SRH) 
generation dominates the thermal contribution to DCR in this 
structure. 

To visualize the avalanche multiplication region of the 
optimized SPAD, LET measurements were performed by 
increasing the VE from 0.5 to 2.5 V. As VE increases, light 
emission appears and strengthens, remaining well-centered 
within the SPAD active area. The results indicate a well-
confined avalanche multiplication region and confirm that the 
optimized GR design effectively suppresses PEB. 

To evaluate the temporal resolution of the optimized 
SPAD, timing jitter was measured at VE = 2.5 V using a ps 
pulsed laser diode with a wavelength of 940 nm. The 
measurement setup captured the time distribution of the first 

photon-triggered avalanche events. As shown in Fig. 14, the 
resulting timing jitter exhibits a full width at half maximum 
(FWHM) of approximately 85 ps. This result highlights the 
device’s fast temporal response and suitability for time-
resolved applications such as LiDAR and FLIM. 

To evaluate the afterpulsing probability (APP) with 
minimal distortion, it is essential to reduce the dead time 
following an avalanche event. We employ an analogue front-
end (AFE) circuit shown in the bottom-tier schematic 
(Fig. 15(a)) to minimize dead time and allow accurate time-
domain analysis. All transistors are 1.1 V low-voltage (LV) 
devices, and a Vc-controlled cascode transistor is 
implemented to expand the circuit's accommodatable VE 
range, which is approximately doubled. To suppress the 
afterpulse effect, an active quenching technique employing a 
positive feedback loop is implemented, which rapidly senses 
the avalanche current to turn off the quenching load transistor, 
thereby significantly increasing the load resistance. 
Concurrently, it enhances the active quenching effect by 
quickly injecting charges into the SPAD anode. This approach 

 
Fig. 13. LET measurement results of the optimized SPAD 
under various VE. 
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Fig. 14. Timing jitter histogram of the optimized SPAD 
measured at 940 nm under VE = 2.5 V. 

N
or

m
al

iz
ed

 C
ou

nt
s

1

Time [ns]
0 0.2 0.4 0.6 0.8

VE = 2.5 V
! = 940 nm

Timing Jitter
FWHM = ~85 ps

Measured
Fitted Curve

This article has been accepted for publication in IEEE Journal of Selected Topics in Quantum Electronics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTQE.2026.3651682

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

 For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



7 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

is also effective in mitigating the degradation of quenching 
speed caused by RC delay, which arises from the increased 
parasitic capacitance between the SPAD's output node and the 
front-end circuit's input in 3D-stacked Cu-to-Cu bonding. This 
front-end circuit also incorporates an active recharge function 
using a negative feedback loop to minimize the dead time for 
precise APP measurements. This feature facilitates a rapid 
reset by quickly removing residual charge in the SPAD after 
an adjustable delay. As illustrated in Fig. 15(b), the output 
pulse generated with an external quenching resistor (RQ) 
exhibits a relatively long tail (~2 μs dead time), primarily due 
to parasitic capacitance and setup-related factors. In contrast, 
using the integrated AFE enables a significantly shorter dead 
time down to ~20 ns, ensuring more precise measurement of 
the afterpulse distribution. Fig. 15(c) compares the 
afterpulsing histograms under both quenching configurations, 
and by integrating the front-end circuit, we could characterize 
the APP at much shorter dead times, which is difficult to 
achieve with discrete device measurements. The results 
confirm that the afterpulse effect is negligible even at the short 
dead time, demonstrating that the device is successfully 
optimized, implying a low concentration of trapping defects. 

V. COMPARISONS AND CONCLUSION 
To evaluate the performance of the optimized SPAD, we 

benchmark key metrics—pixel pitch, dark count rate (DCR), 
photon detection probability (PDP), and timing jitter—against 
prior state-of-the-art SPADs fabricated in 3D-BI structures. As 
shown in Fig. 16(a), our device achieves a PDP of 37 % at 
940 nm, which outperforms all previous works in the sub-5 μm 
pixel pitch regime. Notably, while Ref. [33]—prior 8 μm 
SPAD—reports the highest PDP of 45 %, it is achieved with a 
significantly larger pixel size. In this work, we aggressively 
reduce the pixel pitch by more than half to 3.5 μm, and yet 
successfully recover a substantial portion of the degraded PDP 
through doping profile optimization, achieving performance 
that exceeds many 6 μm and 5 μm devices. In Fig. 16(b), the 
timing jitter of our SPAD is measured as 85 ps at 940 nm, 
which represents the lowest value among all surveyed 3D-BI 
SPADs regardless of pitch. Even compared to 8 μm devices 

with 89 ps jitter [33], the proposed SPAD demonstrates 
enhanced timing resolution with 3.5 μm pixel integration, 
enabled by minimized carrier transit paths and optimized 
avalanche triggering. As summarized in Table I, our SPAD is 
fabricated using an advanced 40 nm node, and through careful 
optimization, we achieve one of the smallest pixel pitches to 
date among 3D-BI SPADs, while preserving excellent 
performance. 

Fig. 15. (a) SPAD (top-tier) and AFE (bottom-tier) schematic. (b) Output pulses and (c) inter-avalanche histograms with the 
AFE and external quenching resistor. 
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Fig. 16. Comparison with state-of-the-art 3D-stacked BI 
SPADs at 940 nm: (a) PDP and (b) timing jitter versus pixel 
pitch. 
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TABLE I 
PERFORMANCE COMPARISON OF STATE-OF-THE-ART 

3D-STACKED BI SPADS 

 

Parameter This 
Work

[22]
IEDM’21

[23]
IEDM’21

[28]
IEDM’22

[30]
VLSI’23

[33]
JSTQE’24

[36]
IEDM’24

Technology
[nm]

40
(3D-BI)

90
(3D-BI)

90
(3D-BI)

90
(3D-BI)

90
(3D-BI)

40
(3D-BI)

90
(3D-BI)

Pixel Pitch
[μm] 3.5 6.39 6 2.5 6 8 5

VB [V] 26.2 30 22 18 22 23.3 21.2

VE [V] 2.5 2.5 3 3 3 2.5 3

DCR
[cps/pix] 2722 1.8 19 173 221α 27β 5

PDP 
@905 nm [%] 44.7 28γ 32γ - 43γ 58 36γ

PDP 
@940 nm [%] 37 24.4γ 20.2γ 21.8γ 33.2γ 45 28.6γ

Timing Jitter
@ 940 nm 

[ps]
85 100 137 214 201 89 168

αMeasured @60°C, βcps/µm2, γPDE w/ Micro-Lens

In this work, we demonstrate a 3.5 μm-pitch 3D-stacked 
BI SPAD fabricated in a 40 nm CIS process, achieving a PDP 
of 37 % and a timing jitter of 85 ps at 940 nm. This 
performance represents a significant advancement over prior 
SPADs with similar or larger pitches, particularly considering 
the aggressive scaling from our previous 8 μm-pitch device. 
While pixel miniaturization typically compromises device 
efficiency and timing precision, our miniaturized SPAD 
successfully recovers performance through vertical-layer 
engineering and doping-profile optimization. In particular, we 
highlight that this work demonstrates one of the smallest pixel 
pitches among reported 3D-BI SPADs without sacrificing 
device performance. The combination of high PDP, low jitter, 
and small pitch makes this SPAD a promising candidate for 
compact depth-sensing systems such as LiDAR and 3D 
imaging in mobile and wearable applications. 
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