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The demands for the higher-bandwidth memory access are 
continuously increasing  for many applications such as data centers, 
HPC, and AI processors. With this, the importance of high-speed 
memory interfaces is increasing as well and a number of technical 
approaches are being pursed in order to overcome the channel 
bandwidth limitation. Especially, the pulse amplitude modulation 4 
(PAM-4) technique is actively investigated [1-4]. PAM-4 can reduce 
the symbol rate by half but at the cost of the reduced signal-to-noise 
ratio (SNR), resulting in the increased bit error rate (BER)[5]. To 
minimize the SNR decrease, the level-separation mismatch ratio 
(RLM) should be optimized. Furthermore, the performance of 
equalizers should be well optimized for inter-symbol interference 
(ISI) reduction. This article presents the technique of achieving a 
80Gb/s transmitter (TX) with a PAM-4 single-ended voltage mode 
(VM) driver implemented in 28-nm CMOS technology, which 
includes a reconfigurable 4-tap feed-forward equalizer (FFE) and an 
edge-boosting auxiliary driver for channel equalization.  

 Fig. 1 illustrates the overall TX structure. It receives 10GHz clock 
from an external source, which goes through the poly phase filter 
(PPF) and is divided into four-phase clocks (C4I/Q/IB/QB). Each of 
these clocks passes through a duty cycle corrector (DCC) and a 
quadrature error corrector (QEC), resulting in the quadrature clock 
with the precise phase difference and duty cycle. Subsequently, 
these clocks are divided into the octal-rate clocks (C8I/Q/IB/QB) and 
applied to each data path.  The data path begins with the generation 
of PRBS31 data in the pattern generator, which undergo 
thermometer encoding, resulting in three distinct data signals. Prior 
to being introduced into the serializers, re-timers are employed to 
ensure an optimal timing margin. The serialized data then pass 
through an 8:4 multiplexer (MUX) and a 4:1 MUX, with each output 
signal directed to five bundles of drivers. Within these bundles, one 
driver is designed to be tunable with the calibration code, enabling 
the precise adjustment for the RLM of PAM-4 data and ensuring 50-
ohm impedance matching. In the case of the FFE, the data selection 
from the 8:4 MUX permits the generation of a total of four-tap data, 
each of which can be directed into a segmented driver. To boost the 
data output bandwidth, an auxiliary driver having the same structure 
as the single slice of the bundle driver is implemented. This auxiliary 
driver accepts data with transition information encoded within, 
thereby reducing rising and falling times during transitions without 
distorting the output level. 

To generate PAM-4 data, the driver can be configured with MSB and 
LSB drivers. However, for the structural symmetry, it is common to 
utilize two instances of the MSB driver and one instance of the LSB 
driver [1-3]. Moreover, when applying binary-to-thermometer 
encoding to the MSB and the LSB data, the data toggle, which is the 
main contributor to power consumption in the VM driver, can be 
reduced. Fig. 2 (a) depicts a conventional low-voltage swing 
terminated logic (LVSTL) PAM-4 driver, which allows the efficient 
driver size and the impedance control. However, its critical path 
stage, operating at the high speed, consists of three stages, leading 
to poor power-supply-induced jitters (PSIJ). In contrast, Fig. 2 (b) 
illustrates the driver structure of a single slice used in our design. It 
employs a 2-stack structure for the impedance control, reducing the 
critical path to two stages and improving PSIJ. Within the driver's 
data path, quarter-rate data (D4(PU/PD)_(A/B/C)) are fed into the pull-up 
and the pull-down drivers in opposite signs. Similarly, the ZQ 
calibration code is split into pull-up and pull-down codes for each of 
A, B, C cases, with a resolution of 5 bits each (ZQ(PU/PD)_(A/B/C)[4:0]). 
By calibrating each thermometer-encoded ZQ code, it becomes 
possible to achieve both 50-ohm impedance matching and RLM 
control simultaneously [6].      

Fig. 3 illustrates the components for constructing an edge-boosting 
auxiliary driver, including an encoder, timing examples, and the 4:1 
MUX at the front end of the auxiliary driver. The encoder is composed 
of logic gates, shown in Fig. 3. By sequentially inputting the parallel 
data of 9 bits (D8[7:0], D8PRE[7]) into the logic gates, we can obtain 
data that carry information about data transitions (D8R/F[7:0]). The 
obtained data are then serialized through the 4:1 MUX. During this 
process, the pulse width of the 4-phase quadrature clock (C4I/Q/IB/QB) 
can be adjusted using delay cells, allowing the control over the pulse 
width time (tPW) of D8R/F[7:0]. This enables the generation of input 
data for the edge-boosting auxiliary driver and provides the ability to 
finely adjust the pulse width, ensuring the precise control over the 
timing characteristics. 

Fig. 4 illustrates the specific architecture of the 8:4 MUX, its timing 
diagrams, and the table for the relevant output of the data selector. 
8 data signals with 1/8 speed of the output signal are generated in 
parallel. By selecting the appropriate data in the data selector for 
each case of 4 taps and sampling them at the correct timing, quarter-
rate data can be obtained. To enhance the bandwidth, 4 UI pulse 
generators are used instead of a 3-stacked MUX. Furthermore, by 
not using a clock selector for timing margin optimization, the loading 
of the octal rate clock is reduced, which results in power consumption 
reduction. 

Fig. 5 (a) and (b) display the measured eye diagrams of PRBS31 
40Gb/s NRZ and PRBS31 80Gb/s PAM-4 single-ended outputs, 
respectively. The PAM-4 output exhibits a voltage swing of 297mV, 
with an eye opening of approximately 45mV in the worst case. Fig. 5 
(c) illustrates a closed 64Gb/s eye diagram without FFE, passing 
through a channel with approximately -6.16dB loss at around 16GHz, 
while Fig. 5 (d) shows the output with equalization achieved with the 
FFE for the same channel loss. Although the swing is reduced about 
15%, the worst eye opening is 37mV, indicating an improved 
performance. The total power consumption is 246mW, resulting in 
the energy efficiency of 3.07pJ/bit at 80Gb/s. 

In Fig. 6 (a), the measured S21 of the channel is shown. Fig. 6. (b) 
provides a detailed power break-down. 4:1 MUX and driver consume 
the largest portion of power (137.5mW), followed by 10GHz clock 
distribution (43.3mW), 8:4 MUX (33.5mW), and pattern generator 
with encoder (31.7mW). Fig. 6 (c) presents a comparison table of our 
measurement results with the published state-of-the-art TXs. Our 
work achieves the highest data rate among all single-ended TXs.  
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Fig. 1. Top block diagram of transmitter. 
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