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A 4λ× 50-Gb/s Si Photonic WDM Transmitter  

with Code-Based Wavelength Calibration and Locking 

Dae-Won Rho1, Jae-Koo Park1,2, YongJin Ji1, Seung-Jae Yang1, Woo-Young Choi1*
 

1Department of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, 
2Memory Division, DRAM Design Team, Samsung Electronics, Hwaseong 18448, South Korea 
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Abstract: This paper presents a 4λ×50-Gb/s Si photonic WDM transmitter with four cascaded 

micro-ring modulators (MRMs), MRM drivers, and a heater controller. A code-based calibration 

and locking technique ensures optimal modulation performance through on-chip control.  

©  2025 The Author(s) 

1. Introduction

 The Si micro-ring modulator (MRM) is of great interest due to its ability to significantly improve bandwidth density 

for many demanding optical interconnect applications, especially in AI/ML applications [1].  However, MRM 

performance is very sensitive to variations in fabrication process and temperature due to its resonant characteristics. 

In particular, with cascaded MRMs for wavelength division multiplexing (WDM) applications, the precise control of 

each MRM’s resonance wavelength is extremely important [1,3]. Typically, the MRM resonance wavelength is 

thermally controlled with an on-chip heater and various thermal control techniques have been reported. Approaches 

in [1–4] use the closed-loop feedback to adjust the on-chip heater power to maintain the target average optical 

output power of the MRM. However, this method typically sets the target value heuristically, which may result in 

the suboptimal modulation performance depending on MRM structures. In [4–5], optimal on-chip heater power is 

determined by directly monitoring the optical modulation amplitude (OMA), but this approach can be power-

intensive and complex due to the need for continuous OMA monitoring. The method in [6] adjusts heater power 

based on transmitted data bit statistics, but this requires constant bit counting, which increases power consumption 

as well as transmitter (TX) design complexity. In this work, we present a new technique of the MRM thermal 

control that determines the optimal on-chip heater power for the maximum OMA during using the coded data 

patterns, and maintain this condition against external temperature variations. The new technique is demonstrated 

with a 4λ ×50-Gb/s Si photonic WDM TX composed of a photonic integrated circuit (PIC) with four MRMs and an 

electronic integrated circuit (EIC) with PAM-4 driving circuits and the MRM wavelength controller.  

2. Block Diagram and Controller Logic
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Fig. 1. (a) Block diagram of WDM transmitter with measurement setup and (b) transmission spectra of TX and input laser wavelength settings. 

Figure 1(a) illustrates an overview of the 4λ ×50-Gb/s Si photonic WDM TX and its measurement setup. In the 

PIC, four MRMs have a resonance wavelength separation of about 2.4-nm, as shown in the measured transmission 

spectrum in Fig. 1(b). Four input laser wavelengths are also shown in the figure. The controller should provide on-

chip MRM heater voltages to align each MRM’s resonance wavelength with the input laser wavelength to achieve 

maximum OMA. Each MRM's drop port within the PIC has a germanium monitor photodetector (MPD) that 

monitors the modulated optical signals. The resulting photocurrent is delivered to the low-bandwidth trans-

impedance amplifier (TIA) in the EIC, the output of which is converted into digital signals and supplied to the 



controller. This controller determines the optimal heater control bits, which are then delivered to the on-chip heater 

after D-to-A conversion, as shown in Fig. 2(a). 
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Fig. 2. (a) 1-channel control path block diagram and (b) measured results of low bandwidth TIA (VAVG). 

During the initial calibration, the controller scans the heater voltage while the Si MRM is modulated in a 

sequence of 1110 and 0001 data patterns. The MPD and the TIA produce signals representing the average optical 

power for each data pattern, VAVG-1110 and VAVG-0001. Note that VAVG-1110 represents 75% of the output range 

between 0 and 1 data levels, while VAVG-0001 25%. The difference between these two corresponds to half of the 

OMA achieved at each heating condition. The controller scans and determines the heater condition that maximizes 

this value. Figure 2(b) shows how the difference between VAVG-1110 and VAVG-0001 changes as the MRM on-chip 

heater voltage changes. Also shown are the modulated MRM spectra at three different points, A, B, and C. Points 

A and C provide the largest difference but the controller selects point C, where the input laser wavelength is 

located on the left side of the MRM resonance wavelength, as the optimal modulation condition, since point A may 

be affected by bi-stability [6]. After finding this optimal heater condition, the controller produces ‘1100’ pattern, 

measures the corresponding ADC output, and use it as the reference signal for the maximum OMA. The controller 

maintains this condition by controlling the heater voltage so that this reference value is locked using the dithering 

technique [7], even when the ambient temperature changes.  By using data patterns, our calibration technique can 

account for the dynamic heating which influences the optimal operating point [8]. 

3. Measurement Results
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Fig. 3. Measurement results of (a) calibration mode and (b) lock mode with thermal stress in 4-channel WDM. 



Figure 3(a) shows measured VAVG values before the ADC for four MRMs as well as VHeater values delivered to 

the four MRM on-chip heaters. The VAVG and VHeater values automatically determined by the on-chip controller 

agree very well with the manually determined values shown on the right side of Fig. 3(a). To confirm the optimal 

conditions are maintained even with the external temperature variation, the chip stage temperature is changed 

sinusoidally between 20 to 30°C for approximately 1000 seconds, as shown at the bottom of Fig. 3(b). The same 

figure also shows that the heater power changes sinusoidally in the opposite direction, allowing the MRMs to 

maintain a constant temperature, resulting in stable VAVG values, as shown at the top of Fig. 3(b). Figure 4(a) 

shows the eye diagrams measured during this thermal variation, confirming that all the MRMs maintain their 

modulating performances. 

   (a)  (b) 
Fig. 4. (a) 4 channel 50-Gb/s PAM-4 measured eye diagrams. (b) Chip photo 

Figure 4(b) shows the chip photo. The PIC and EIC were fabricated using 130-nm SOI and CMOS 28-nm 

processes, respectively.  
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