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Analysis and Optimization of Polarization-Insensitive
Semiconductor Optical Amplifiers with

Delta-Strained Quantum Wells
Yong-Sang Cho, Member, IEEE,and Woo-Young Choi

Abstract—Polarization sensitivity of semiconductor optical am-
plifiers (SOAs) with delta-strained quantum-well (QW) structures
is investigated. The valence band structures and TE, TM optical
gain spectra are calculated for the various delta-strained QW
structures. It is shown that the number and location of the delta
layers affect the polarization dependence of the delta-strained
quantum well SOA signal gains. The optimal delta-strained QW
structure for the SOA application is identified and its theoretical
verification is provided.

Index Terms—Delta-strain, optical amplifiers, optical gain, po-
larization-sensitivity, quantum well, semiconductor.

I. INTRODUCTION

RECENTLY, there has been a growing interest in the
semiconductor optical amplifier (SOA) for optical

switching and signal processing applications because of its
integratability with other optical devices and large nonlinearity.
The optical nonlineariy in the SOA is used in realizing optical
3R regeneration (reamplifying–reshaping–retiming) [1] wave-
length switching matrix in wavelength division mulitplexing
(WDM) systems [2] and wavelength converters using cross
gain or phase modulation [3] or four-wave mixing [4]. In these
applications, dependence of the SOA gain on polarization is
one of the major performance-limiting factors. The polarization
sensitivity of the quantum well (QW) SOA stems from the
different quantization levels for heavy-hole (HH) bands, which
provide the TE-mode dominant optical gain, and light-hole
(LH) bands, which provide the TM-mode dominant optical
gain. In addition, the difference in the confinement factors for
TE and TM modes in the SOA waveguide contribute to the
different TE and TM signal gains.

One method for eliminating the SOA polarization sensitivity
is to use the bulk active layer with the square-shaped cross sec-
tion [5]. But such an SOA has a very small waveguide width,
which results in a large coupling loss when the SOA is cou-
pled to optical fiber. In order to avoid this problem, a mode con-
verter can be used [6], but this complicates the SOA fabrication
process. Although it is possible to use the low tensile-strained
bulk active layer to make the waveguide width sufficiently large
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[7], it is preferred for many applications to use the QW SOA
which has larger nonlinearity than the bulk SOA [8]. In order
to realize a polarization-insensitive QW SOA, several different
QW structures have been used: low tensile-strained QWs [9],
[10], QWs with tensile barriers [11], tensile-strained QWs with
compressive barriers [12], alternation of tensile and compres-
sive QWs [13]–[16], and the delta-strained QW, in which the
strain is applied only at a shallow and highly strained layer,
called the delta layer [17]–[19]. Among these, it is reported that
the delta-strained QW can yield a polarization-insensitive SOA
at 1550 nm [18].

Carlo et al. performed theoretical analysis of the delta-
strained QW using the tight-bonding method [17], but their
study was limited to a particular type of delta-strained QW in
which one delta layer is located at the center of the QW. In
this paper, various delta-strained QW structures are analyzed
in which the number and the position of the delta layers
are systematically varied. From our analysis, the optimal
delta-strained QW structure for SOA application is identified
and theoretical verification is provided.

II. STRUCTURE AND MODELING OF DELTA-STRAINED

QW SOA

The delta-strained QW structure investigated in this paper
consisted of one InGaAs/InGaAsP QW in which 3-mono-
layer-thick (about 9 Å) pseudomorpic GaAs delta layers are
embedded. It is assumed that all the layers are epitaxially
grown on the InP substrate. The lattice mismatch between InP
and GaAs is 3.8%. The delta-strained well is surrounded by
1.3 m-InGaAsP quaternary layers, which also act as the SCH
layer. The total well thickness is adjusted so that the optical
gain peaks at around 1550 nm.

Fig. 1(a)–(c) show the valence band energy diagrams for three
types of delta-strained QWs that are investigated in this paper.
In Type I, one delta layer is inserted; in Type II, two delta layers;
and in Type III, three delta layers. SOAs based on Type I [18]
and Type III [19] have been experimentally demonstrated, and a
waveguide modulator based on Type II has been demonstrated
[20]. The polarization dependence of SOAs based on these three
types of delta-strained QWs is systematically investigated in this
paper. As can be seen from the figure, HH and LH bands are sep-
arated at the delta layer due to the strain. In the figure, thick lines
are used for HH bands and thin lines for LH bands., , and

in the figure represent the distance between the delta layer

0018–9197/01$10.00 © 2001 IEEE



CHO AND CHOI: POLARIZATION-INSENSITIVE SOAs WITH DELTA-STRAINED QWs 575
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Fig. 1. Valence band energy diagrams for: (a) Type I; (b) Type II; and (c) Type III structures. Thin lines are LH bands and thick lines are the HH bands.

Fig. 2. E � k diagrams for: (a) Type I (solid lines) and unstrained QW (dashed lines); (b) Type II; and (c) Type III structures.

and the InGaAsP SCH layer for each type of delta-strained QW.
The changes in the SOA polarization-sensitivity as functions of
these parameters are investigated.

The band offsets for conduction and valence bands are ob-
tained from the model-solid theory [21]. For valence band anal-
ysis, a Luttinger–Kohn Hamiltonian based on the
method is used with the strain effect consideration. The effective
mass equations are solved by the finite element method (FEM),
which has a faster conversion time and is more efficient for com-
plicated structures than the finite difference method (FDM) [22].
The efficiency provided by the FEM allows us to compare many
different delta-strained QW structures without any difficulty in
computation time. Material parameters used in the calculation

are obtained from [23]. The optical gain calculation is done with
the density matrix formalism [24]. It is assumed that the equal
numbers of electrons and holes exist in the QW. For many body
effects, only the bandgap renormalization effect is considered
because the Coulomb enhancement of the optical gain is negli-
gible in the case of tensile-strained QWs [25]. The amount of
bandgap shrinkage due to renormalization is obtained from the
empirical equation given in [26].

Polarization-dependent optical confinement factors for the
SOA waveguide structure are calculated by solving the 1-D
waveguide problem for TE and TM polarizations [27]. The
waveguide structure used in the calculation has 0.216-m-thick
SCH layers and infinitely long InP claddings. The ratios
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between the calculated TM and TE confinement factors for
Type I, II, and III structures are 0.6568, 0.6559, and 0.6553,
respectively.

The SOA TE and TM signal gains that are used for evaluating
the SOA polarization-sensitivity are defined as follows [28]:

[dB]
(1)

where
optical confinement factor;
optical gain;
SOA length;
loss in the SOA.

For our analysis, mm and cm are used, and the
SOA facet reflectivity is assumed to be zero.

III. POLARIZATION-SENSITIVITY OF DELTA-STRAINED

QW SOA

In QWs without delta layers, HH band energy levels are usu-
ally higher than those of LH bands, resulting in more TE gain
than for the TM case. In delta-strained QWs, as shown in Fig. 1,
the delta layer introduces larger valence band discontinuity for
HH bands than LH bands, and the quantized energy levels for
HH bands experience a larger shift downward than those for
the LH bands that shift upward. This is clearly demonstrated by
Fig. 2(a), where the valence band– relations are shown for
a Type I structure with the delta layer in the middle of the QW
(solid lines) and also for a QW without any delta layers (dotted
lines). Since each valence subband has HH and LH character-
istics for due to the band mixing effect, it is neces-
sary to estimate the strength of TE and TM transitions for the
subband of interest in order to identify it as HH- or LH-like.
Fig. 3 shows calculated transition strength for several transi-
tions possible with the delta-strained QW whose band structure
is shown in Fig. 2(a). From these, we can determine that the
top valence subband is LH-like as the TM transition strength
for the transition between the first conduction subband (c1) and
the top valence subband (v1) is much larger than the TE transi-
tion strength. Consequently, it can be determined that the delta
layer pushes up the LH band and pushes down the HH band so
much that their order is reversed. In Fig. 2, the top three va-
lence subbands are identified as LH- or HH-like from the tran-
sition strength calculations. It should be noted that our results
shown in Figs. 2(a) and 3 that are obtained from the FEM-based
effective mass approximation agree very well with the results
obtained from much more elaborate, but more time-consuming,
tight binding analysis [17].

The influence of the delta layer location on the TE, TM gain
is shown in Fig. 4 in which the TE and TM optical gain spectra
for a Type I structure are shown for several values of. The
injected carrier density of cm is used for this cal-
culation. As is increased, i.e., the delta layer moves toward
the well center, the peak TE gain is reduced while the peak TM
gain is increased. In order to determine the optimal location for
the delta layer, we have to consider the SOA signal gain rather
than the optical gain, since there exists a difference in the TE,
TM waveguide confinement factors. Fig. 5 shows the spectra of
the SOA polarization-sensitivity ( ) defined as the difference
in the TM and TE signal gains ( ) at several values

(a)

(b)

Fig. 3. Relative transition strength for: (a) TE and (b) TM polarization for Type
I structure.

(a)

(b)

Fig. 4. Gain spectra for Type I structure at various delta layer locations for:
(a) TE and (b) TM mode.

of for each type of the delta-strained SOA structure. From this,
the optimal delta layer location can be determined for each type.
For Type I, as shown in Fig. 5(a), the spectrum moves up
as is increased, and the optimal location for the delta layer
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(c)

Fig. 5. Difference in SOA signal gains (G � G ) at various delta layer
locations for: (a) Type I; (b) Type II; and (c) Type III structures.

is the well center. Fig. 4 shows that the TM gain is larger than
that for TE at this optimal location, and this is needed in order
to offset the difference in the confinement factors. For Type II,

gets larger as gets larger but it comes down when is
sufficiently large. This can be understood as the influence of the
change in the amount of perturbation that the odd-mode enve-
lope functions experience that are located away from the well
center. For Type III, a similar trend is observed. The optimal lo-

(a)

(b)

(c)

Fig. 6. Difference in SOA signal gains (G � G ) at various injected
carrier densities for the delta-strained QWs with the optimal delta layer
locations: (a) Type I; (b) Type II; and (c) Type III structures. Carrier density is
increased in the step of1� 10 cm .

cation of the delta layer can be determined as for
Type I, for Type 2, and for
Type III.

For many SOA applications, SOA polarization-insensitivity
should be maintained for a wide range of injected carrier densi-
ties. We investigated the dependence of polarization-sensitivity
on the injected carrier density for each type of delta-strained QW
with the optimal delta layer location. The injected carrier density
investigated ranges from 3 to cm . As seen in Fig. 6,
each type shows a different dependence on the injected carrier
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densities. If we limit the wavelength range of interest to around
1550 nm, Type II shows the least dependence. This can be
understood from the valence band structures shown in Fig. 2,
where the valence band structures of three types of optimized
delta-strained QWs are shown. All three structures have the
LH-like top subband, which ensures the larger TM gain needed
to offset a larger TE confinement factor. The difference lies in
the amounts of separation between the first and second, and
second and third subbands. It can be observed that Type-II
structure has a distinctive feature in that the first two subbands
are closely placed for the wide ranges of, and the third
subband is far away from the first two. As the injected carriers
increase, the range of valence band energies involved in the
transition increases. This does not cause much change in the
polarization sensitivity in Type II, as closely placed first top
subbands maintain the ratio of the TE and TM contribution over
a wide range of without interference from the third subband
which would enhance the TM contribution. Consequently, an
SOA based on the Type-II structure has a signal gain at around
1550 nm, which is least dependent on the injected carrier
densities.

A similar observation has been made for a waveguide mod-
ulator with delta-strained QWs, each of which has two delta
layers with . The polarization sensitivity was
maintained within 3 dB for the reverse bias range of 0–2.5 V
over the wavelength range of 1600–1630 nm [20]. We can also
observe that transitions for wavelengths shorter than 1550 nm
in Type II have a strong dependence on the injected carrier den-
sities. as such transitions have to involve the third valence sub-
band due to their transition energies. In addition, it can be ob-
served that the Type-III structure, with its second and third sub-
bands closely located to eachother, has the largest dependence
on injected carrier densities. We believe that the Type-II QW
structure that has been identified as the optimal delta-strained
QW structure can be realized without too much difficulty in
the manner similar to that used for realizing various types of
delta-strained QWs [18]–[20].

IV. CONCLUSION

The valence band structures and optical gains of three types
of delta-strained InGaAs/InGaAsP QWs and the polarization-
dependent signal gains of SOAs based on such QWs are inves-
tigated in this paper. In our analysis, the location of the delta
layers was varied so that the optimal delta layer location could
be identified. In addition, the polarization dependence of the
SOA signals gains was investigated as a function of the SOA
injected carrier densities. It was found that the Type-II structure
with two delta layers located at is the optimal
structure for SOA applications. The reason for this is that this
QW structure has a band structure in which the top valence sub-
band is LH-like, a second subband which is HH-like and tracts
the first subband, and the third subband is far away from the first
two.

Although our analysis is based on a particular set of numerical
parameters which may not always be applicable for real applica-
tions, the ease with which our analysis was performed with the
simple effective mass approximation will allow us to analyze

and optimize any delta-strained QW that may have different pa-
rameters. In addition, the key observation made for the optimal
structure should be valid for any QW structure to be used for
polarization-insensitive SOA applications.
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