Parametric optimization of depletion-type Si micro-ring modulator performances

To cite this article: Younghyun Kim et al 2019 Jpn. J. Appl. Phys. 58 062006

View the article online for updates and enhancements.
Parametric optimization of depletion-type Si micro-ring modulator performances

Younghyun Kim1, Youngkwan Jo1, Minkyu Kim1, Byung-Min Yu1, Christian Mai2, Stefan Lischke2, Lars Zimmermann2, and Woo-Young Choi1

1Department of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749, Republic of Korea
2Innovations for High Performance Microelectronics, 15236 Frankfurt (Oder), Germany
E-mail: wchoi@yonsei.ac.kr

We present the modulation performance optimization process for a depletion-type Si micro-ring modulator (MRM). Our optimization process is based on two different types of model parameters for ring resonator decay time constants derived from the coupled-mode theory. The MRM figure of merit (FOM) is defined for target data rates considering both optical modulation amplitude and the modulation frequency response based on two model parameters. The parametric optimization for modulator output eye diagrams is achieved by analyzing the FOM with MRM simulation with varying two model parameters. In addition, we demonstrate the optimized eye diagram can be achieved with our optimization process and the measurement results agree well with the simulation result. © 2019 The Japan Society of Applied Physics

1. Introduction

Si Photonics has attracted great attention due to the large-scale photonic integration capability, which enables future computing systems with low-power and high-speed optical interconnects. Among several key building blocks used for Si photonic interconnect systems, Si optical modulators play an important role for high data rates. The carrier-induced refractive-index change is commonly used for the Si modulators by means of carrier injection, depletion and accumulation, and then a light intensity or phase is modulated through a Mach–Zehnder interferometer and a micro-ring resonator. Depletion-type Si micro-ring modulators (MRM) are actively investigated as an important device for high-performance optical interconnect systems based on Si Photonics because they can provide large modulation bandwidths and small device footprints, which are highly attractive for cost-effective co-integration of photonics and electronics. The performances of Si MRM have been improved and experimentally demonstrated in perspectives of high-speed modulation, high energy efficiency, increased transmission capacity using advanced modulation formats and bandwidth enhancement using optical peaking or cascaded micro-ring structures. In addition, there have been several reports for analyses and modeling of Si MRMs. In particular, the tradeoff between Si MRM modulation bandwidth and optical modulation amplitude (OMA) was investigated based on the small-signal model which is obtained from the coupled-mode equation. However, there has not been any report that provides the systematic device design guideline for the optimal eye performance given the target data rate. In this paper, we present such an optimization technique based on simple Si MRM device parameters.

This paper is organized as follows. In Sect. 2, we briefly introduce the Si MRM model based on the coupled-mode theory from which an analytical expression for the modulation frequency response containing key model parameters is obtained. In Sect. 3, we explain the Si MRM performance optimization process based on the model parameters. In Sect. 4, we show the experimental verification. Section 5 concludes the paper.

2. Si MRM model

With the coupled-mode theory, the dynamics of a Si MRM can be described as

\[
\frac{d}{dt} \alpha(t) = \left(j \omega_{\text{res}} - \frac{1}{\tau} \right) \alpha(t) - j \sqrt{\frac{2}{\tau_\text{eff}}} \alpha(t),
\]

where \(\alpha \) is the amplitude of the energy stored in the ring resonator, \(\omega_{\text{res}} \) is the resonance angular frequency, \(\tau \) is the decay time constant for the stored energy, \(\tau_\text{eff} \) is the effective decay time constant due to the loss in the ring resonator, and \(\tau_\text{res} \) due to coupling with the directional coupler. \(\alpha_{\text{in}} \) is the input and \(\alpha_{\text{out}} \) is the output field.

The steady-state characteristics can be derived from (1) as

\[
\left(\frac{\alpha_{\text{out}}}{\alpha_{\text{in}}} \right)^2 = \left(j \omega - j \omega_{\text{res}} + \frac{2}{\tau_\text{eff}} \frac{1}{\tau} \right)^2.
\]

With the small-signal approximation of Eqs. (1) and (2), the modulation frequency response of a Si MRM in the s-domain can be given as

\[
\Delta_\phi(s) = \frac{4 \alpha_{\text{in}}}{\pi n_\theta} \cdot \frac{\partial \alpha_{\text{in}}}{\partial V_j} \cdot \frac{\omega_{\text{res}} D/\tau_\text{eff}}{D^2 + 1/\tau^2} \cdot \frac{s + 2/\tau_\text{eff}}{s^2 + (2/\tau)s + D^2 + 1/\tau^2}.
\]
of 0, frequency responses for a sample Si MRM. For bias voltages
the operating wavelength, D is 60 pm with the decay time
constants to maximize OMA. It is known that the steady-state
OMA is maximized when $D = (3^{1/2} \tau)^{-1}$, which can also be
deduced by introducing $s = 0$ in (4).

Also, the modulation bandwidth becomes maximally flat at
$D = 60$ pm as can be seen in Fig. 1(b). In detail, DC gain which
refers to small-signal gain in the low modulation frequency
and bandwidth increase with increasing D and they are
maximized at 60 pm. After 60 pm, the bandwidth still
increases but with sacrificing DC gain. Therefore, we used the
D to maximize DC gain as well as the bandwidth. Here,
the modulation bandwidth was calculated with consideration
to Si MRM electrical properties. The transfer function for
electrical parts is given as

$$\Delta_{f}(s) = \frac{1/sC_{cc}}{sL_{int} + R_{int} + 1/sC_{cc}} \cdot \frac{1/sC_{f}}{R_{s} + 1/sC_{f}},$$

where C_{cc} is the capacitance between n^+ to p^+ metal contact,
C_{f} the p–n junction capacitance, R_{s} the series resistance, L_{int}
and R_{int} the inductance and resistance due to interconnection
from pads to metal contacts.

Details of electrical properties of the Si MRM can be found
in and calculated electrical 3 dB bandwidth using (5)
with measured values for circuit parameters is about 62 GHz.
With this electrical 3 dB bandwidth, its influence on the Si
MRM dynamics for 25 and 50 Gbps operations is not
significant. Although each of C_{f} and R_{s} is influenced by the
ring size, their product is not because C_{f} is proportional to the
ring circumference but R_{s} is inversely proportional to the ring
circumference. Consequently, the results of our analysis
should be valid for Si MRMs with different sizes as long as
the doping concentrations are the same.

In the same way, the normalized OMA which refers to
OMA normalized by the input optical power (P_{out}/P_{in}) and
the bandwidth can be calculated by many different kinds of
resonance conditions with various τ_{l} and τ_{e}. We show the
simulated results for normalized OMA and 3 dB bandwidth
as a function of τ_{l} and τ_{e} in Figs. 2(a) and 2(b), respectively.
As τ_{l} and τ_{e} increase, the OMA increases until it reaches its
optimum value, as can be seen in Fig. 2(a) but the bandwidth
decreases in Fig. 2(b), showing the tradeoff between OMA
and bandwidth relates to the Q factor of the ring resonator.

The saturated OMA along with τ_{e} is due to the small
resonance despite the high Q factor.

In order to obtain the optimized eye diagram, we introduce a
figure of merit (FOM) defined as below

$$\text{FOM} = \text{Normalized OMA} \times f(BW),$$

where BW is the 3 dB bandwidth divided by GHz, and DR
is the target data rate divided by Gbps. The saturation function
is used for $f(BW)$ since the modulator bandwidth does not
have to be larger than about 70% of the data rate for NRZ
modulation format.31)

Figure 3 shows the calculated FOM with varying τ_{l} and τ_{e}
values for three different data rates of 12.5, 25, and 50 Gbps.
The FOM dependence on τ_{l} and τ_{e} for 12.5 Gbps as shown in

respectively. It is important to notice that the MRM modulation
frequency response is determined by a few key parameters,
with which modulator performance optimization can be
achieved.

3. Performance optimization

Figure 1(a) shows the simulated Si MRM steady-state
transmission characteristics and Fig. 1(b) the modulation
frequency responses for a sample Si MRM. For bias voltages
of 0, −1, −2 V, the values of modeling parameters (τ_{l} τ_{e})
are obtained as 22.42 ps rad$^{-1}$, 22.88 ps rad$^{-1}$, 23.12 ps rad$^{-1}$ for
τ_{l}, and 24.65 ps rad$^{-1}$, 24.62 ps rad$^{-1}$, 24.65 ps rad$^{-1}$ for τ_{e},
respectively. Also, the values of n_{eff} are 2.637 124, 2.637 150
and 2.637 167 for each bias voltage.23) The device has the
lateral p–n junction diode waveguide structure as in23) with
the nominal peak doping concentration of 7 × 1017 cm$^{-3}$ for
p-region and 3 × 1018 cm$^{-3}$ for n-region.

It is important to consider the detuning parameter, D
because device performance is highly dependent on it. For
Figure 1.
(Color online) (a) Steady-state transmission characteristics with
variable reverse bias voltages, and (b) E/O frequency responses with different
detuning wavelengths for fabricated Si MRM.
Fig. 3(a) is similar to the normalized OMA as shown in Fig. 2(a) since the bandwidth does not have much influence due to the low data rate. However, for larger data rates of 25 and 50 Gbps, the optimal τ_e value moves to the lower value since more bandwidth is required than the OMA.

To investigate the relationship between the FOM and the eye diagrams under various conditions, we also simulated eye diagrams by numerically solving (1) and (2). The details can be found in, where the accuracy of our ring modulator model was confirmed. Figure 4 shows the simulated 25 Gbps eye diagrams at different τ_l and τ_e values for six different points shown in Fig. 3(b). Among them, point B having the largest FOM produces the largest eye opening. The bandwidth is large enough for point A but the limited eye opening occurs because the OMA is too low. For point b, c, and d, the bandwidth is sufficient but the eye opening is smaller due to smaller OMA with the decreasing τ_l value. Simulated 50 Gbps eye diagrams with different τ_l and τ_e values are shown in Fig. 5. Compared to 25 Gbps data operation, a larger bandwidth is required and, consequently, a larger value for τ_e, results in the clearest eye diagram, for point A in Fig. 5(c). As shown in Figs. 5(b) and 5(c), the eye opening becomes smaller even with the larger OMA due to the lack of bandwidth at point B and C, respectively. For points b, c, and d in Fig. 3(c) with corresponding eye diagrams in Figs. 5(d)–5(f), eye diagrams are clean with sufficient bandwidth but the opening is small due to smaller OMA.
4. Experimental verification

The device fabricated by Innovations for high-performance microelectronics is used for experimental verification.\(^{32}\) Figures 6(a) and 6(b) show the optical microscopy images of the fabricated Si MRM. In order to verify our optimization process, we designed a Si MRM for 25 Gbps operation which requires \(\tau_l = 26.40\) and \(\tau_e = 25.36\) ps rad\(^{-1}\) roughly corresponding to point B in Fig. 3(b). The device has 8 \(\mu\)m radius and the doped-Si waveguide has 32.23 dB cm\(^{-1}\) of round-trip loss with the nominal peak doping concentration of \(7 \times 10^{17}\) cm\(^{-3}\) for p-region and \(3 \times 10^{18}\) cm\(^{-3}\) for n-region. In addition, the field-ratio of the coupled light at the directional coupler is 0.1889, with which Q factor of several thousand can be achieved for the ring resonator. Figures 7(a) and 7(b) show the simulated and measured eye diagrams with 25 Gbps PRBS \(2^7 - 1\) patterns without any pre-emphasis, 2 \(V_{\text{peak-to-peak}}\), \(-1\) \(V_{\text{DC}}\), 60 pm for \(D\), respectively. For the simulated eye diagram, we included the effect of equipment’s bandwidth (about 18 GHz) by adding one-pole low-pass filter. The input optical power was kept less than 0.025 mW in order to avoid any asymmetric dynamic OMA of the Si MRM due to self-heating\(^{21}\).

The input data provided by the pattern generator (Anritsu MP1800A) drives the Si MRM device without any termination. Since the Si MRM is very small, it can be taken as a lumped element (a capacitive load) and can be driven without any termination resistor. As it can be seen, they show good agreement, having 4.48 dB extinction ratio, which satisfies specifications required for 100 G PSM\(^{43}\) and CWDM\(^{34}\) applications, indicating the effectiveness of the parametric optimization for Si MRMs.

5. Conclusion

We demonstrate the parametric optimization process for the depletion-type Si MRM modulation performance. Using the data rate dependent FOM with modeling parameters, \(\tau_l\) and \(\tau_e\), it is possible to optimize the eye diagrams for a target data rate. We numerically determine the FOMs for 12.5, 25, and 50 Gbps data rates, in which the condition for the optimized FOM produces the best eye diagram. In addition, we confirm the accuracy of our optimization process by measuring a 25 Gbps Si MRM eye diagram. Our technique can be used as a very useful design guide for realizing high-performance Si MRMs.
Fig. 5. (Color online) Simulated eye diagrams for 50 Gbps PRBS $2^7 - 1$ patterns with different τ_l and τ_e values at (a) A, (b) B, (c) C, (d) b, (e) c, and (f) d of Fig. 3(c).

Fig. 6. (Color online) Optical microscopy image of (a) fabricated Si MRM with electrical signal pads and optical input/output and (b) enlarged Si MRM.

Fig. 7. (Color online) (a) Simulated and (b) measured eye diagrams for 25 Gbps PRBS $2^7 - 1$ patterns at $\tau_l = 26.40$ ps rad$^{-1}$ and $\tau_e = 25.36$ ps rad$^{-1}$ in optimized FOM.

32) D. Knoll et al., “SiGe BiCMOS for optoelectronics (invited),” ECS Trans. 75, 121 (2016).

33) 100G PSM4 Specification, PSM4-MSA.

34) 100G CWDM Spec. CWDM4-MSA.