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Numerical values of the Auger coefficient and the free carrier absorption (FCA) coefficient are ex-
tracted by applying deep neural networks (DNNs) to the L-I characteristics of 850 nm GaAs/AlGaAs
laser diodes. Two elemental DNNs are used to extract each coefficient sequentially. The fidelity of the
extracted values is established through meticulous correlation of L-I characteristics bridging the realms
of simulations and measurements. The methodology presented in this paper offers a way to accurately
extract the Auger and FCA coefficients, which were traditionally treated as fitting parameters. It is an-
ticipated that this approach will be applicable to other types of opto-electronic devices as well.
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L. INTRODUCTION

The demand for laser diodes (LDs) continues to surge,
owing to their inherent advantages, including compact
size, cost-effectiveness, and exceptional power conversion
efficiency [1-3] in various applications such as medical
instruments [4, 5] and communication systems [6, 7]. No-
tably, they are investigated as crucial elements for sensing
applications such as LiDAR [8-10] and facial expression or
recognition systems [11, 12]. As their significance grows,
there is a need to optimize their performance in the device
design stage with simulation. Therefore, determining nu-
merical values for key design parameters is essential for
this. However, determining these experimentally presents
challenges because measurement results often encompass
intricate parameter interactions, and isolating each param-
eter’s influence is often difficult.

This challenge can be mitigated with the use of deep
learning or deep neural networks (DNNs), which is a potent

method for uncovering complex interactions between input
and output variables, and has been successfully applied in
various optics research areas including image reconstruc-
tion [13, 14], optical communications [15, 16], and inverse
design of optical devices [17, 18]. In addition, deep neural
networks (DNNs) have been used for parameter extraction
and inverse design of LDs [19, 20], in which a DNN featur-
ing seven input design parameters and 60 output optical
power values across three hidden layers was employed. The
previous results demonstrated that a well-trained DNN can
effectively mimic LD L-I characteristics. Furthermore, by
coupling this DNN with the particle swarm optimization
(PSO) method, the feasibility of inverse parameter design
of LDs was demonstrated. However, in these previous re-
search results, no specific LD structures or comparisons
with measurement results were provided.

To address this gap and facilitate applications in real
devices, we propose an iterative DNN structure to deter-
mine the numerical values of the Auger coefficient and the
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free carrier absorption (FCA) coefficient in 850 nm GaAs/
AlGaAs LDs. In Section II, as we will explain, Auger and
FCA coefficients significantly affect the L-I characteristics
of LDs. Traditionally, numerous repetitive comparisons
between simulation and measurement results were made
to determine the values of these parameters, a process that
strongly depends on the researcher’s expertise and requires
a considerable amount of time. We propose a method that
can accurately extract the Auger and FCA coefficients of
the actual device using training data and the DNN. This ap-
proach is applicable not only to the LD used in this paper
but also to other types of opto-electronic devices. Informa-
tion about the device structure is sent to the DNN through
the LD simulation using PICS3D, a commercially available
software. Leveraging a dataset of 448 simulation results for
DNN training and testing, a temperature-dependent model
of the Auger coefficient and the value of the FCA coeffi-
cient are determined.

The remainder of this paper is structured as follows. Sec-
tion II outlines the parameter extraction algorithm and the
DNN structure. In Section III, we present the characteristics
of fabricated LDs and validate the accuracy of extracted

3 hidden

N

.
AR

AN
OO
efficiency Q' M;&\»

elements

DNN#1

DNN#2

FIG. 1. Consecutive schematic structure of deep neural
network (DNN).

parameters using them. Finally, Section IV concludes the
paper.

II. ALGORITHM AND DNN STRUCTURE

The L-I characteristics of an LD typically involve two
primary components of the threshold current and the slope
efficiency, which are influenced by various factors, includ-
ing the device’s layer structure, doping density, cavity
length, and material properties such as internal loss, the Au-
ger coefficient, and the FCA coefficient. If the LD structure
is known, material properties are the key factors for the L-I
characteristics. Specifically, the threshold current is deter-
mined by the interplay between internal loss and the Auger
coefficient [21, 22]. On the other hand, the slope efficiency
is determined by internal loss, the Auger coefficient, and
the FCA coefficient [22]. It is essential to accurately extract
the numerical values for these parameters for analysis and
device design optimization. While internal loss can be ob-
tained experimentally, the other two parameters are often
treated as fitting parameters for matching L-I characteristics
measurement and simulation [22, 23].

In this study, we use two DNN structures, labeled
DNN#1 and DNN#2, to accurately and efficiently extract
the Auger coefficient using the threshold current, and the
FCA coefficient using the slope efficiency, respectively.
The consecutive DNN structures and overall workflow are
shown in Figs. 1 and 2. Our approach requires two separate
DNNs, each designed to extract a specific design parameter
in succession. Each DNN has three input variables and one
output variable, all connected through three hidden layers
with 512 elements each.

The architecture of the DNNs can be adjusted based on
the size of the training dataset. The DNNs use the Adam
optimizer, the ReLU activation function, and the mean
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FIG. 2. Overall process of parameter extraction.
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squared error (MSE) loss function, and are trained over
a million epochs to achieve deep learning convergence.
DNN#1 takes the threshold current, temperature, and in-
ternal loss as inputs and produces the Auger coefficient as
output. DNN#2, on the other hand, takes the previously ex-
tracted Auger coefficient, the slope efficiency, and internal
loss as inputs, and produces the FCA coefficient output. It
is assumed that the Auger coefficient exhibits temperature
dependence, while FCA is considered a constant.

Generating the necessary training data involves L-I char-
acteristic simulations with varying values of internal loss
of [ats ..., atj-], the Auger coefficient of [C, ..., C;,], the
FCA coefficient of [k, ..., k,,_,], and temperature of [T, ...,
T,..]. To train the DNNs effectively, careful data prepara-
tion is crucial. For DNN#1, where the FCA coefficient is
not a dominant factor for the threshold current, simulations
are conducted with &, = 0. For DNN#2, simulations are run
at a specific temperature (7;) given the assumed absence of
temperature dependence in the FCA coefficient. This stra-
tegic approach reduces the number of required simulations
from (j xkxmxn)to(jxkxn)+(jxkxm)—(x*xk).
Subsequently, the generated data are split into training and
testing sets.

Since the performance of the DNNs is influenced by
the training data, it is essential to identify the DNN with
the lowest testing loss. Thus fine-tuning is performed, with
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FIG. 3. Cross-section of 850 nm GaAs/AlGaAs laser diode.
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DNN#1 and DNN#2 undergoing k& — 2 and m — 2 iterations
of deep learning, respectively. For instance, DNN#1’s test-
ing set, comprising j x n data, is progressively trained and
tested with varying Auger coefficients from C, to C, ,. The
most suitable DNN is determined by observing the mini-
mum testing loss curve over the iterations. The final step
involves using the chosen DNN with measurement data to
accurately extract real device design parameters, such as
Auger and FCA coefficients. For the implementation of
deep learning, open-source Python and PyTorch libraries
are employed.

III. PARAMETER EXTRACTION AND
VALIDATION

A cross-sectional view of a sample 850 nm GaAs/Al-
GaAs LD is illustrated in Fig. 3. The LD comprises three
8 nm GaAs quantum wells, AlGaAs barriers, and graded
refractive index separate confinement heterostructures. P-
type and N-type AlGaAs layers serve as the top and bottom
cladding layers. The fabricated device has a stripe width of
1 pm and a cavity length of 700 pum, and is equipped with
an antireflection (AR) coating on one side (R = 0.11) and

13.6
132
~ 1281
S
pr — 293K
@ 120F o g
- H a0l — 323K
= 116} 2
(] 2
£ c®
9 112+ S0
C 5
108 | o°o 0 20 2 40 50 €0 70
Current (mA)
10,4 " 1 n 1 L 1 " 1 L 1 L 1 L
290 295 300 305 310 315 320 325

Temperature (K)

FIG. 4. Temperature dependence of internal loss of laser diode.
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FIG. 5. Loss curves of DNN#1 of (a) training and (b) testing.
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high-reflection (HR) coating on the other side (R = 0.95).
The temperature dependence of the LD’s internal loss is
measured, and the results are shown in Fig. 4. The inset
shows the LD’s L-I characteristics at various temperatures.
Threshold currents of 23.5, 24.2, 25.4, and 26.2 mA, along
with corresponding slope efficiencies of 0.983, 0.969,
0.959, and 0.943 mW/mA, are measured at 293 K, 303 K,
313 K, and 323 K, respectively. Notably, the internal loss
exhibits linear dependence with temperature (7), given as
12.18 + 0.041(T — 298), which serves as one of the inputs
for both DNNS.

A total of 448 L-I characteristic simulations are conduct-
ed, spanning different parameter values with j =8, k=7, m
=5, and n = 4. This simulation includes internal loss values
of [1,3,5,7,9,11, 13, 15] cm ', Auger coefficient (C) of [0,
1,3,5,7,9,11] x 10°° em®™" and FCA(k) of [0, 1, 2, 3, 4]
x 107 cm ™, all evaluated at different temperatures of [293,
303, 313, 323] K, and each range for Auger and FCA coef-
ficient was set based on commonly known values. Figure 5
shows the training and testing loss curves of DNN#1 when
the testing set’s C values are [1, 3, 7, 9] % 107 em® ™.
Notably, the absence of a curve for C; =5 x 10°° em®s”™'
is due to underfitting. While the training loss curves sug-
gest well-trained DNNs for all cases, Fig. 5(b) highlights
that the testing set with C, = 10’ cm’s™ is unsuitable for
DNN#1 because of overfitting. Consequently, the appropri-
ate DNN#I is determined to be the one aligned with the
testing set of C, =7 x 10~ cm’s ™, exhibiting the minimum
loss, and each training and testing loss value is 6.4 and 15.7
x 10~ at an epoch of 1 million.

Leveraging this DNN#1, Auger coefficients of the LD
are extracted at varying temperatures, as depicted in Fig. 6.
Using a well-established model equation [24] given by C
= C, x exp(E /kpomanl ), Where E, is the activation energy
and kpguman 18 the Boltzmann constant, extracted values of
C, 0f3.95x 10 cm’ " and E, of 167.5 meV are obtained.
The corresponding modeling curve is presented in Fig. 6,
and this extracted Auger model automatically becomes an
input for DNN#2.

Figure 7 shows the training and the testing curves of
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DNN#2 at T, = 303 K when the testing set’s & values are [1,
2,3]x 10" cm™. The absence of a curve for k; =3 x 10"
cm ” is due to underfitting. Notably, the suitable DNN#2 is
found for the testing set aligned with k, =2 x 10™"* cm °, as
shown in Fig. 7(b), and each value of training and testing
loss is 0.8 and 14.5 x 10~ at an epoch of 1 million. Conse-
quently, the extracted FCA coefficient is determined to be
1.01 x 10 * em™.

Finally, a verification process is conducted to validate
the accuracy of the extracted values. The L-I characteristics
are recalculated using the extracted parameters across vari-
ous temperatures. The simulation results and the measured
data are compared in Fig. 8 at various temperatures, show-
ing a close alignment between the two.

IV. CONCLUSION

The Auger and FCA coefficients of the GaAs/AlGaAs-
based 850 nm LD, the focal device in this investigation,
were effectively obtained with a methodological approach
designed to reduce dependence on the researcher’s ex-
pertise and enhance accuracy. Conclusively, the study has
showcased the successful extraction of crucial parameters
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FIG. 6. Extracted values and curve of Auger coefficient.
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FIG. 8. L-I characteristics of simulation and measurement at (a) 293 K, (b) 303 K, (c¢) 313 K, and (d) 323 K using extracted

parameters.

from the 850 nm GaAs/AlGaAs LD using a direct and se-
quential DNN system. This extraction process is carried
out sequentially to ensure each parameter’s uniqueness and
mitigate the presence of multiple feasible values. The reli-
ability of the extracted parameter values was verified by
comparing the measured L-I characteristics with simula-
tion results using the extracted parameters. This research is
expected to apply to other LD components and aid in the
design optimization and performance enhancement of the
components.
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