Side-band Injection-Locking

60 GHz

Optical 60 GHz signal generation using side-band injection-locking of semiconductor lasers

*, ,

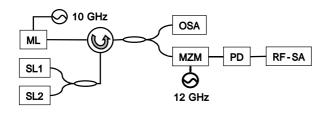
Abstract

Optical 60 GHz millimeter-wave (MMW) signal generation is demonstrated using side-band injection-locking method in the master/slave configuration, where two slave lasers are locked to two of the sidebands produced by the direct rf-modulation of a master laser. These two locked slave laser outputs beat each other in the photo-detection and produce the stable and very pure 60GHz signal.

				microwave		가		side-band		
가					. side-band				target	
		가	millin	neter-wave	band	2-(b))			
(MMW)					(SL; slave laser)7 lock				SL	
Intelligent	Traffic	System,	Indoor	Wireless		가	1	MMW		
Communica	Forming			가		MMW				
carrier									ML sideband	
가		,		,	lock	SL p	hoto-detec	ction	beating	
			가	MMW			electr	ical spe	ctrum	
fiber-optic				MMW 가						
가		[1-2].		MMW						
						2-(a)	ML	10GHz	z $(f_{\rm m})$ rf-source	
	base	station		가				optical	spectrum .	
					peak		가	$f_{ m m}$		
가 가					center		<u>+</u>	± 3	peak SL	
									2-(b) .	
heterodyne					,	2-(b)	pe	ak		
sideband injection locking					M	L	, $f_{ m m}$	6	60 GHz가	
				60 GHz						
MMW			1-(a) ,		,	1-	(a)	rf-	
master lase	master laser (ML) MMW sub-				spectrum analyzer (RF-SA) 기					
harmonic				intensity		40 GHz		,	1-(b)	
modulation , frequency modulation					Mach-Zehnder Modulator (MZM)					
, 2-(a) ML					photonic down-conversion					

. MZM 12 GHz photonic down-conversion , 3 60 GHz .

rf-spectrum


analyzer resolution power fluctuation ± 0.5 dB

, side-band optical injection-locking $$\operatorname{MMW}$$

Reference

[1] L. Goldberg et al., Elec. Lett.-19(13), 1983.

[2] R.-P. Braun et al., Elec. Lett.-32(7), 1996.

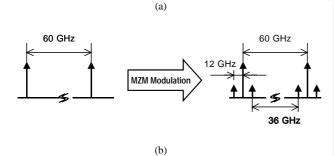
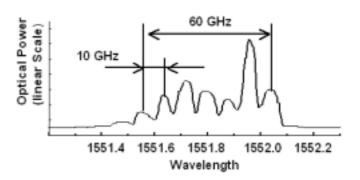



Fig. 1. Experimental setup (a) and photonic down-conversion via Mach-Zehnder modulator (b)

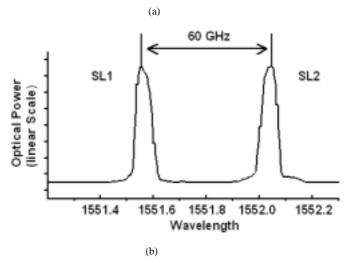


Fig. 2. Measured optical spectra. Direct-modulated ML (a) and two locked SL's (b)

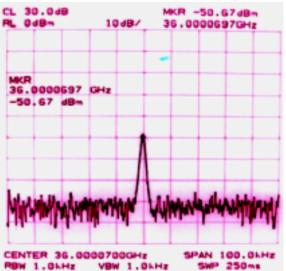


Fig. 3. Measured rf-spectrum of 60 GHz signal after photonic down-conversion by 24 GHz (see Fig. 1-(b)).