200Mbps Burst Mode Clock and Data Recovery

* (a)

(a)

Abstract

A burst mode clock and data recovery circuit is realized that can operate in 200Mbps range. The circuit is capable of extracting clock signals from NRZ type burst-mode data packets and recover input data without missing any data. It also has a retiming block that reduces jitter noises. The circuit is fabricated in 3.3V, TSMC $0.35\mu m$ CMOS technology and measurements are done that confirm the operation of the circuit.

1.

burst mode data 가 ATM-PON

burst mode

[1-2]. Clock and Data

Recovery(CDR) circuit 1
retiming
burst mode

CDR

MOSIS TSMC 0.35µm CMOS

2. Clock and Data Recovery Circuit

CDR 2

. PLL

, jitter

S2P(serial to parallel)

[3].
2 LOOP 1 PLL (Phase Locked Loop)
inverter chain VCO (Voltage Controlled Oscillator)

PFD (Phase frequency Detecter), filter

. LOOP 1

LOOP 2가

, 3

(1.8µsec)

VCO-a VCO-b

A, Clock B

[3]. 2⁷-1 PRBS(Pseudo Random Binary

Sequences; 2^7-1)

가

4 .

, PLL 200Mbps

.

i Network Lab.

jitter 7†
7† , S2P
[4]. 8 25Mbps
S2P .

3.

CDR MOSIS TSMC $0.35\mu m$ CMOS , package 48pin PTQFP . 5 layout 2.5mm \times

1. Summary of CDR circuits

Frequency	160MHz - 240MHz
Power supply	3.3V single
Power consumption(including I/O)	350mW @ 200MHz
Technology	1P - 4M 0.35μm CMOS

chip Anritsu MP1632A PPG
Tek. 11801C sampling Osc. eye
diagram
BER (6), Anritsu MP1632A ED
BER . 2²³-1 PRBS input
data 7 .

4.

burst mode 0.35μm CMOS CDR . VCO

フト , burst mode フト , jitter S2P フト . フト

-- ,

[1] T. Kajiwara, E. Maekawa, *et al.*, "An optical receiver design for ATM-PON access system", 1996 Global Telecommunications Conference, Vol. 3, pp. 1613–1617.

[2] S.H. Ide, *et al.*, "+3.3V PON Receiver IC with a High-Speed ATC Circuit", 1997 EDMO, pp.141 –146.

[3] Y. Ota, *et al.*, "High-Speed, Burst-Mode, Packet-Capable Optical Receiver and Instantaneous Clock recovery for Optical bus Operation", Journal of Lightwave Technology, Vol.12, No.2, pp. 325–331, 1994.

[4] A.E. Dunlop *et al.* "150/30Mb/s CMOS Non-Oversampled Clock and Data Recovery Circuits with Instantaneous Locking and Jitter Rejection", 1995 Solid-State Circuits Conference, pp. 44–45.

1. Configuration of Clock and Data Recovery circuits

2. Clock and Data Recovery circuits

4. Clock and Data Recovery

5. Layout

6. Eye diagram